Dimensions of Magnetic Flux


Electromagnetism is also among the subdivisions of the physics unit, which deals with the studying and analysis of the magnetic field caused by the electric field for many other reasons. 


Let’s just define the magnetic flux over an external part (surface) of the body. 


The magnetic flux is the surface-integral of the usual component of the magnetic field (B), which moves through that surface. 


The symbol which is used to denote the magnetic flux is ‘Φ’ or ‘ΦB’. 


Maxwell is the centimetre–gram–second (CGS) system of the unit for magnetic flux.

Wb or Weber is the SI unit of magnetic flux. 

Do You Know About the Magnetic Flux?

In simple terms, the magnetic flux is defined as the measurement of the sum of the magnetic field which travels through a selected area. Otherwise, it can be stated as the amount of magnetic field lines transient through a specified closed superficial. 


The magnetic flux deals with the calculation of the total amount of magnetic field that is passing through the body’s surface.


In this case, we can consider the area of any size, as well as its orientation, independent according to the direction of the magnetic field. 


The dimensional formula of Magnetic Flux can be represented as [M1 L2 I-1 T-2]

In this dimension,

  • I = Current

  • L = Length

  • M = Mass

  • T = Time

The Dimension of Magnetic Flux Density

The magnetic flux density is a different measure as compared to the magnetic flux of the body.


The quantity of magnetic flux via unit area is considered as perpendicular to the direction of magnetic flux, known as the magnetic flux density.


There is a relation between the flux density (B), and the magnetic field (H).


It can be given as:


B = μH


The measurement of the magnetic flux density is in Webers per square metre. It is corresponding to Tesla (T).  


The definition of the magnetic flux density (B) is explained below. 


It is the force applying over unit current per unit length on a wire kept at the right angle to the magnetic field.


The dimension of Tesla (T) = kgs−2A-1


B is a vector quantity.


B = F/I1




F = total force acting on the wire 


I = current flowing through the wire 


l = length of wire 


[MT−2L0A−1] is the dimensional formula of magnetic flux density 

How to Find Dimensions of Magnetic Flux?

Let’s have just derived the dimension of magnetic flux


We know that:


ΦB = Magnetic Flux = B × A × Cos θ-------(1)




B = Magnetic Field 


A = Surface Area


θ = Angle between the normal to the surface and magnetic field 


We also know,


[M0 L2 T0] = the dimensional formula of area 




Electric Charge × Magnetic Field × Velocity = Force


∴ Force × ElectricCharge×Velocity (ElectricCharge×Velocity)-1 = Magnetic Field-------(2)


⇒ [M0 L1 T-1] = the dimensional formula of velocity---------(3)


As per our knowledge, 


Charge = current × time


∴ [M0 L0 I1 T1] is the dimensional formula of electric charge--------(4)




M × a = M × [M0 L1 T-2] = Force


∴ [M1 L1 T-2] = The dimensional formula of force---------(5)


If we replace the equations (3), (4) and (5) in equation (2) we acquire,


Force × Charge×Velocity (Charge×Velocity)-1 = Magnetic Field 


⇒ [M1 L1 T-2] × [M0 L0 I1 T1]-1 × [M0 L1 T-1]-1 = B


We concluded that [M1 T-2 I-1] is the dimensional formula of Magnetic Field------------(6)


By replacing the equation (6) in equation (1) we achieve,


B × A × Cos θ = Magnetic Flux  


⇒ ΦB = [M1 T-2 I-1] × [M0 L2 T0] (θ = Dimensionless Quantity)


⇒ [M1 L2 T-2 I-1] = ΦB ---------(Proved)

Unit and Dimension of Magnetic Flux 

Sir Michael Faraday explained a perfect mathematical relation for clarifying the magnetic flux. 


It helped him to get the relation due to the modes of experiments that were performed by him on electromagnetic induction. 


The total credit regarding the concept of magnetic flux goes to Michael Faraday as he played an important role in accumulating all the relations in electromagnetism.  


These relations have multiple usages in electromagnetic induction.


For calculating the magnetic flux, we need to assume the field-line image of a magnet or the system of magnets. 


A rectangular plate of the area ‘A’ is placed under the influence of the perpendicular uniform magnetic field  (Θ = 90⁰).


The magnetic field's magnitude is B and is a scalar product.


[M1 L2 T2 I1] = The SI unit and dimension of the magnetic flux.


In this dimension 


M = mass 


L = length 


T = time 


I = electric current 


Weber is the SI derived unit of magnetic. It is also written in volt-second.

What is Vedantu All About?

  1. Vedantu is an online learning platform for all the students that provides free access to an online library of academic books and other learning material, micro-courses on several Important topics, foundation and crash courses for the preparation of various competitive engineering entrance exams.

  2. Vedantu provides NCERT Solutions, Topic-wise Explanations, Solved Sample Question Papers, Previous Year's Question Papers, Keynotes and Revision notes, Important Questions, Solved References like HC Verma, Lakhmir Singh, RD Sharma, Exemplar, RS Aggarwal and several others. 

  3. Vedantu also provides several Personalised Academic courses for junior students and preschool kids like Spoken English Course, Maths classes, English reading course for the students of age 4 to 14 and Coding Classes for the students of Class 1 to 8. 

Merits of learning and Preparing from Vedantu

  1. Vedantu provides a Vedantu Improvement Promise (VIP) to all the students who apply for courses at Vedantu that ensures a Money back guarantee without any questions asked to students if they fail to achieve any progress from learning at Vedantu. This makes Vedantu a safe, secure and reliable online learning platform for students worldwide.

  2. Apart from the free quality study material that Vedantu provides to the students, several other free Micro courses are also available for the students at a price of 1 rupee in CBSE, ICSE and IIT JEE preparation just to make sure that every student can get access to all the important topics at an economical price.

  3. Vedantu also provides Private Home Tutionsin selected metropolitan cities through an online mode for the preparation of CBSE, ICSE, State board exams and IIT JEE(Mains and Advanced) and NEET exams.

Book your Free Demo session
Get a flavour of LIVE classes here at Vedantu
Vedantu Improvement Promise
We promise improvement in marks or get your fees back. T&C Apply*
FAQs (Frequently Asked Questions)

1. What is the Dissimilarity Between the Magnetic Flux and the Magnetic Field?

The dissimilarity between the magnetic flux and the magnetic field is given below.

We know that the area near the magnet where the motion of charge feels a force is called the magnetic field.

However, in the case of the magnetic flux, it visualizes the amount of force of magnetic lines generated by the magnet.

2. Explain about the Two Kinds of the Magnetic Pole.

There are two kinds of magnetic poles seen, such as the north-seeking pole. It is found in a magnet and is also called a north magnetic pole. 

The other one is the south-seeking pole found just opposite to the north-pole. It is also found in a magnet and named a south magnetic pole. 

Different poles attract each other, just like different magnets. Similar poles repel each other.

3. Explain the Factors that Affect the Magnetic Field.

There are several factors that affect the strength of the magnetic field, such as 

  1. Core material’s nature

  2. The current’s strength traveling through the core

  3. The number of rounds of wire on the core 

  4. The structure (shape and size) of the core

4. Calculate the Magnetic Flux of the Wire Producing a Force of 440 N of a Length 20m. The Current in the Wire is 2A.

Data given here are:

Force-induced in the wire F = 440 N

Length of the wire (l) = 20m

Current in the wire (I) = 2A

The magnetic flux B = F/I1 = 440/(20 * 2) = 11 Tesla

5. How long will it take for the students to prepare for the topic Dimensions of Magnetic flux from this article of Vedantu?

For a fresher or a student who is passionate to prepare at an early age, it will require a bare minimum of 1 hour or so to completely understand each detail of the topic. Since the above topic is an essential part of the IIT JEE syllabus it is required for students to understand Magnetic flux and its dimensions to its depth. As a result, it will require approx 60 minutes for any student to study this topic in depth.

6. What are some quick and easy Tips for IIT preparation for students at Vedantu?

At Vedantu, students can prepare for IIT JEE (Mains and Advanced) both as a foundation course and JEE crash course. So as an early bird students should start learning the syllabus of IIT JEE and should keenly observe NCERTs and understand subjects like Science and maths from references in every class. Students can also learn about these topics from the micro-courses available at vedantu.com. In this way, students can start their preparation right from the beginning of their learning. Moreover, even for the students who wish to learn more in less time, Vedantu provides crash courses for JEE (Mains and Advanced) with an AIR level preparation. Therefore, the best piece of advice for the students who do crash courses is to strictly follow the guidelines of the teachers and be consistent in the revision and homework.

7. What are some Other courses available at Vedantu for students to prepare for entrance exams and other competitive exams?

Vedantu also provides online coaching classes for the preparation of entrance exams like NEET in both foundation and  NEET crash courses. For crash courses, students can prepare for NEET in just 70 days at a very affordable price. Furthermore, students can also prepare for other engineering exams like National Talent Search Exam (NTSE), International English Olympiad (IEO), Kishore Vaigyanik Protsahan Yojana (KVPY), International Maths Olympiad (IMO) and many others.

8. What are the merits of online learning and specifically from Vedantu?

Online learning has a scope of learning beyond four walls. The access to technology improvises the fun element among the students. Vedantu provides a fun learning with lots of  Live and Interactive Quiz tests with surprise gifts for students to motivate them to push their limits and enhance learning. Students who live in remote areas can experience LIVE learning through online platforms. In this regard, Vedantu provides LIVE and interactive classes for students along with doubt sessions by experts to smoothen the preparation of students. Students who do not have the study material in the form of the hard copy are provided with free learning material in the form of a soft copy or PDF format.