Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 7 Maths Chapter 13: Exponents and Powers - Exercise 13.2

ffImage
Last updated date: 26th Apr 2024
Total views: 571.2k
Views today: 12.71k
MVSAT offline centres Dec 2023

NCERT Solutions for Class 7 Maths Chapter 13 (EX 13.2)

Free PDF download of NCERT Solutions for Class 7 Maths Chapter 13 Exercise 13.2 (EX 13.2) and all chapter exercises at one place prepared by expert teacher as per NCERT (CBSE) books guidelines. Class 7 Maths Chapter 13 Exponents and Powers Exercise 13.2 Questions with Solutions to help you to revise complete Syllabus and Score More marks. Register and get all exercise solutions in your emails. Every NCERT Solution is provided to make the study simple and interesting on Vedantu. Subjects like Science, Maths, English will become easy to study if you have access to NCERT Solution for Class 7 Science, Maths solutions and solutions of other subjects.  


Class:

NCERT Solutions for Class 7

Subject:

Class 7 Maths

Chapter Name:

Chapter 13 - Exponents and Powers

Exercise:

Exercise - 13.2

Content-Type:

Text, Videos, Images and PDF Format

Academic Year:

2024-25

Medium:

English and Hindi

Available Materials:

  • Chapter Wise

  • Exercise Wise

Other Materials

  • Important Questions

  • Revision Notes

Access NCERT Solution For Class 7 Maths Chapter 13- Exponents and Powers

Exercise 13.2

Refer for exercise 13.2 in the PDF

1. Using laws of exponents, simplify and write the answer in exponential form:

i) ${3^2} \times {3^4} \times {3^8}$

Ans: The given expression is: ${3^2} \times {3^4} \times {3^8}$

By laws of exponents, we have ${a^m} \times {a^n} = {a^{m + n}}$ .

So, we can write the given expression as,

${3^2} \times {3^4} \times {3^8} = {3^{\left( {2 + 4 + 8} \right)}}$

${3^2} \times {3^4} \times {3^8} = {3^{14}}$

Hence, the required answer is ${3^2} \times {3^4} \times {3^8} = {3^{14}}$.

ii) ${6^{15}} \div {6^{10}}$

Ans: The given expression is: ${6^{15}} \div {6^{10}}$

By laws of exponents, we have ${a^m} \div {a^n} = {a^{m - n}}$ .

So, we can write the given expression as,

${6^{15}} \div {6^{10}} = {6^{\left( {15 - 10} \right)}}$

${6^{15}} \div {6^{10}} = {6^5}$

Hence, the required answer is ${6^{15}} \div {6^{10}} = {6^5}$.


ii) ${a^3} \times {a^2}$

Ans: The given expression is: ${a^3} \times {a^2}$

By laws of exponents, we have ${a^m} \times {a^n} = {a^{m + n}}$ .

So, we can write the given expression as,

${a^3} \times {a^2} = {a^{\left( {3 + 2} \right)}}$

${a^3} \times {a^2} = {a^5}$

Hence, the required answer is ${a^3} \times {a^2} = {a^5}$.

iii) ${7^x} \times {7^2}$

Ans: The given expression is: ${7^x} \times {7^2}$

By laws of exponents, we have ${a^m} \times {a^n} = {a^{m + n}}$ .

So, we can write the given expression as,

${7^x} \times {7^2} = {7^{x + 2}}$

Hence, the required answer is ${7^x} \times {7^2} = {7^{x + 2}}$.

iv) ${\left( {{5^2}} \right)^3} \div {5^3}$

Ans: The given expression is: ${\left( {{5^2}} \right)^3} \div {5^3}$

By laws of exponents, we have ${\left( {{a^m}} \right)^n} = {a^{m \times n}}$

So, we can write the given expression as,

${\left( {{5^2}} \right)^3} \div {5^3} = {5^{\left( {2 \times 3} \right)}} \div {5^3}$

${\left( {{5^2}} \right)^3} \div {5^3} = {5^6} \div {5^3}$

By laws of exponents, we also have ${a^m} \div {a^n} = {a^{m - n}}$

${\left( {{5^2}} \right)^3} \div {5^3} = {5^{6 - 3}}$

${\left( {{5^2}} \right)^3} \div {5^3} = {5^3}$

Hence, the required answer is ${\left( {{5^2}} \right)^3} \div {5^3} = {5^3}$

v) ${2^5} \times {5^5}$

Ans: The given expression is: ${2^5} \times {5^5}$

By laws of exponents, we have ${a^m} \times {b^m} = {\left( {a \times b} \right)^m}$.

So, we can write the given expression as,

${2^5} \times {5^5} = {\left( {2 \times 5} \right)^5}$

${2^5} \times {5^5} = {10^5}$

Hence, the required answer is ${2^5} \times {5^5} = {10^5}$.

vi) ${a^4} \times {b^4}$

Ans: The given expression is: ${a^4} \times {b^4}$

By laws of exponents, we have ${a^m} \times {b^m} = {\left( {a \times b} \right)^m}$ .

So, we can write the given expression as,

${a^4} \times {b^4} = {\left( {a \times b} \right)^4}$

Hence, the required answer is ${a^4} \times {b^4} = {\left( {a \times b} \right)^4}$ .


vii) ${\left( {{3^4}} \right)^3}$

Ans: The given expression is: ${\left( {{3^4}} \right)^3}$

By laws of exponents, we have ${\left( {{a^m}} \right)^n} = {a^{m \times n}}$

So, we can write the given expression as,

${\left( {{3^4}} \right)^3} = {3^{\left( {4 \times 3} \right)}}$

${\left( {{3^4}} \right)^3} = {3^{12}}$

Hence, the required answer is ${\left( {{3^4}} \right)^3} = {3^{12}}$.

viii) $\left( {{2^{20}} \div {2^{15}}} \right) \times {2^3}$

Ans: The given expression is: $\left( {{2^{20}} \div {2^{15}}} \right) \times {2^3}$

By laws of exponents, we also have ${a^m} \div {a^n} = {a^{m - n}}$

$\left( {{2^{20}} \div {2^{15}}} \right) \times {2^3} = {2^{\left( {20 - 15} \right)}} \times {2^3}$

$\left( {{2^{20}} \div {2^{15}}} \right) \times {2^3} = {2^5} \times {2^3}$

By laws of exponents, we have ${a^m} \times {a^n} = {a^{m + n}}$ .

So, we can write 

$\left( {{2^{20}} \div {2^{15}}} \right) \times {2^3} = {2^{5 + 3}}$

$\left( {{2^{20}} \div {2^{15}}} \right) \times {2^3} = {2^8}$

Hence, the required answer is $\left( {{2^{20}} \div {2^{15}}} \right) \times {2^3} = {2^8}$.

ix) ${8^t} \div {8^2}$

Ans: The given expression is: ${8^t} \div {8^2}$

By laws of exponents, we have ${a^m} \div {a^n} = {a^{m - n}}$ .

So, we can write the given expression as,

${8^t} \div {8^2} = {8^{t - 2}}$

Hence, the required answer is ${8^t} \div {8^2} = {8^{t - 2}}$.

2. Simplify and express each of the following in exponential form:

i) $\dfrac{{{2^3} \times {3^4} \times 4}}{{3 \times 32}}$

Ans: The given expression is $\dfrac{{{2^3} \times {3^4} \times 4}}{{3 \times 32}}$

$32$can be written as,

$32 = {2^5}$

Also $4$ can be written as,

$4 = {2^2}$

Then the given expression becomes,

$\dfrac{{{2^3} \times {3^4} \times 4}}{{3 \times 32}} = \dfrac{{{2^3} \times {3^4} \times {2^2}}}{{3 \times {2^5}}}$

By laws of exponents, we have ${a^m} \times {a^n} = {a^{m + n}}$ .

So, we can write

$\dfrac{{{2^3} \times {3^4} \times {2^2}}}{{3 \times {2^5}}} = \dfrac{{{2^{3 + 2}} \times {3^4}}}{{3 \times {2^5}}}$

$\dfrac{{{2^3} \times {3^4} \times {2^2}}}{{3 \times {2^5}}} = \dfrac{{{2^5} \times {3^4}}}{{3 \times {2^5}}}$

By laws of exponents, we have  ${a^m} \div {a^n} = {a^{m - n}}$ .

So, we can write

$\dfrac{{{2^3} \times {3^4} \times {2^2}}}{{3 \times {2^5}}} = {2^{5 - 5}} \times {3^{4 - 1}}$

$\dfrac{{{2^3} \times {3^4} \times {2^2}}}{{3 \times {2^5}}} = {2^0} \times {3^3}$

We have ${a^0} = 1$

$\dfrac{{{2^3} \times {3^4} \times {2^2}}}{{3 \times {2^5}}} = 1 \times {3^3}$

$\dfrac{{{2^3} \times {3^4} \times {2^2}}}{{3 \times {2^5}}} = {3^3}$

Hence, the required solution is $\dfrac{{{2^3} \times {3^4} \times {2^2}}}{{3 \times {2^5}}} = {3^3}$.

ii) $\left[ {{{\left( {{5^2}} \right)}^3} \times {5^4}} \right] \div {5^7}$

Ans: The given expression is $\left[ {{{\left( {{5^2}} \right)}^3} \times {5^4}} \right] \div {5^7}$

By laws of exponents, we have ${\left( {{a^m}} \right)^n} = {a^{m \times n}}$

So, we can write the given expression as

$\left[ {{{\left( {{5^2}} \right)}^3} \times {5^4}} \right] \div {5^7} = \left[ {{5^{2 \times 3}} \times {5^4}} \right] \div {5^7}$

$\left[ {{{\left( {{5^2}} \right)}^3} \times {5^4}} \right] \div {5^7} = \left[ {{5^6} \times {5^4}} \right] \div {5^7}$

By laws of exponents, we have ${a^m} \times {a^n} = {a^{m + n}}$ .

So, we can write

$\left[ {{{\left( {{5^2}} \right)}^3} \times {5^4}} \right] \div {5^7} = {5^{6 + 4}} \div {5^7}$

$\left[ {{{\left( {{5^2}} \right)}^3} \times {5^4}} \right] \div {5^7} = {5^{10}} \div {5^7}$

By laws of exponents, we have  ${a^m} \div {a^n} = {a^{m - n}}$ .

So, we can write

$\left[ {{{\left( {{5^2}} \right)}^3} \times {5^4}} \right] \div {5^7} = {5^{10 - 7}}$

$\left[ {{{\left( {{5^2}} \right)}^3} \times {5^4}} \right] \div {5^7} = {5^3}$

Hence, the required solution is $\left[ {{{\left( {{5^2}} \right)}^3} \times {5^4}} \right] \div {5^7} = {5^3}$.

iii) ${25^4} \div {5^3}$

Ans: The given expression is ${25^4} \div {5^3}$

$25$can be written as

$25 = {5^2}$

So, the expression will be

${25^4} \div {5^3} = {\left( {{5^2}} \right)^4} \div {5^3}$

By laws of exponents, we have ${\left( {{a^m}} \right)^n} = {a^{m \times n}}$

So, we can write 

${25^4} \div {5^3} = {5^{2 \times 4}} \div {5^3}$

${25^4} \div {5^3} = {5^8} \div {5^3}$

By laws of exponents, we have  ${a^m} \div {a^n} = {a^{m - n}}$ .

So, we can write

${25^4} \div {5^3} = {5^{8 - 3}}$

${25^4} \div {5^3} = {5^5}$

Hence, the required solution is ${25^4} \div {5^3} = {5^5}$.

iv) $\dfrac{{3 \times {7^2} \times {{11}^8}}}{{21 \times {{11}^3}}}$

Ans: The given expression is $\dfrac{{3 \times {7^2} \times {{11}^8}}}{{21 \times {{11}^3}}}$

$21$can be written as,

$21 = 7 \times 3$

Then the given expression becomes,

$\dfrac{{3 \times {7^2} \times {{11}^8}}}{{21 \times {{11}^3}}} = \dfrac{{3 \times {7^2} \times {{11}^8}}}{{7 \times 3 \times {{11}^3}}}$

By laws of exponents, we have  ${a^m} \div {a^n} = {a^{m - n}}$ .

So, we can write

$\dfrac{{3 \times {7^2} \times {{11}^8}}}{{21 \times {{11}^3}}} = {3^{1 - 1}} \times {7^{2 - 1}} \times {11^{8 - 3}}$

$\dfrac{{3 \times {7^2} \times {{11}^8}}}{{21 \times {{11}^3}}} = {3^0} \times {7^1} \times {11^5}$

We have ${a^0} = 1$

$\dfrac{{3 \times {7^2} \times {{11}^8}}}{{21 \times {{11}^3}}} = 1 \times 7 \times {11^5}$

$\dfrac{{3 \times {7^2} \times {{11}^8}}}{{21 \times {{11}^3}}} = 7 \times {11^5}$

Hence, the required solution is $\dfrac{{3 \times {7^2} \times {{11}^8}}}{{21 \times {{11}^3}}} = 7 \times {11^5}$.

v) $\dfrac{{{3^7}}}{{{3^4} \times {3^3}}}$

Ans: The given expression is $\dfrac{{{3^7}}}{{{3^4} \times {3^3}}}$

By laws of exponents, we have ${a^m} \times {a^n} = {a^{m + n}}$ .

So, we can write

$\dfrac{{{3^7}}}{{{3^4} \times {3^3}}} = \dfrac{{{3^7}}}{{{3^{4 + 3}}}}$

$\dfrac{{{3^7}}}{{{3^4} \times {3^3}}} = \dfrac{{{3^7}}}{{{3^7}}}$

By laws of exponents, we have  ${a^m} \div {a^n} = {a^{m - n}}$ .

So, we can write

$\dfrac{{{3^7}}}{{{3^4} \times {3^3}}} = {3^{7 - 7}}$

$\dfrac{{{3^7}}}{{{3^4} \times {3^3}}} = {3^0}$

We have ${a^0} = 1$

$\dfrac{{{3^7}}}{{{3^4} \times {3^3}}} = 1$

Hence, the required solution is $\dfrac{{{3^7}}}{{{3^4} \times {3^3}}} = 1$.

vi) ${2^0} + {3^0} + {4^0}$

Ans: The given expression is ${2^0} + {3^0} + {4^0}$ .

We have ${a^0} = 1$

${2^0} + {3^0} + {4^0} = 1 + 1 + 1$

By simplify,

${2^0} + {3^0} + {4^0} = 3$

Hence, the required solution is${2^0} + {3^0} + {4^0} = 3$.

vii) ${2^0} \times {3^0} \times {4^0}$

Ans: The given expression is ${2^0} \times {3^0} \times {4^0}$ .

We have ${a^0} = 1$

${2^0} \times {3^0} \times {4^0} = 1 \times 1 \times 1$

By simplify,

${2^0} \times {3^0} \times {4^0} = 1$

Hence, the required solution is${2^0} \times {3^0} \times {4^0} = 1$.

viii) $\left( {{3^0} + {2^0}} \right) \times {5^0}$

Ans: The given expression is $\left( {{3^0} + {2^0}} \right) \times {5^0}$ .

We have ${a^0} = 1$

$\left( {{3^0} + {2^0}} \right) \times {5^0} = \left( {1 + 1} \right) \times 1$

By simplify,

$\left( {{3^0} + {2^0}} \right) \times {5^0} = 2 \times 1$

$\left( {{3^0} + {2^0}} \right) \times {5^0} = 2$

Hence, the required solution is$\left( {{3^0} + {2^0}} \right) \times {5^0} = 2$.

ix) $\dfrac{{{2^8} \times {a^5}}}{{{4^3} \times {a^3}}}$

Ans: The given expression is $\dfrac{{{2^8} \times {a^5}}}{{{4^3} \times {a^3}}}$

$4$can be written as,

$4 = {2^2}$

Then the given expression becomes,

$\dfrac{{{2^8} \times {a^5}}}{{{4^3} \times {a^3}}} = \dfrac{{{2^8} \times {a^5}}}{{{{\left( {{2^2}} \right)}^3} \times {a^3}}}$

By laws of exponents, we have ${\left( {{a^m}} \right)^n} = {a^{m \times n}}$

So, we can write

$\dfrac{{{2^8} \times {a^5}}}{{{4^3} \times {a^3}}} = \dfrac{{{2^8} \times {a^5}}}{{{2^{\left( {2 \times 3} \right)}} \times {a^3}}}$

$\dfrac{{{2^8} \times {a^5}}}{{{4^3} \times {a^3}}} = \dfrac{{{2^8} \times {a^5}}}{{{2^6} \times {a^3}}}$

By laws of exponents, we have  ${a^m} \div {a^n} = {a^{m - n}}$ .

So, we can write

$\dfrac{{{2^8} \times {a^5}}}{{{4^3} \times {a^3}}} = {2^{8 - 6}} \times {a^{5 - 3}}$

$\dfrac{{{2^8} \times {a^5}}}{{{4^3} \times {a^3}}} = {2^2} \times {a^2}$

By laws of exponents, we have ${a^m} \times {b^m} = {\left( {a \times b} \right)^m}$ .

So, we can write

$\dfrac{{{2^8} \times {a^5}}}{{{4^3} \times {a^3}}} = {\left( {2a} \right)^2}$

Hence, the required solution is $\dfrac{{{2^8} \times {a^5}}}{{{4^3} \times {a^3}}} = {\left( {2a} \right)^2}$.

x) $\left( {\dfrac{{{a^5}}}{{{a^3}}}} \right) \times {a^8}$

Ans: The given expression is $\left( {\dfrac{{{a^5}}}{{{a^3}}}} \right) \times {a^8}$

By laws of exponents, we have  ${a^m} \div {a^n} = {a^{m - n}}$ .

So, we can write

$\left( {\dfrac{{{a^5}}}{{{a^3}}}} \right) \times {a^8} = {a^{5 - 3}} \times {a^8}$

$\left( {\dfrac{{{a^5}}}{{{a^3}}}} \right) \times {a^8} = {a^2} \times {a^8}$

By laws of exponents, we have ${a^m} \times {a^n} = {a^{m + n}}$ .

So, we can write

$\left( {\dfrac{{{a^5}}}{{{a^3}}}} \right) \times {a^8} = {a^{2 + 8}}$

$\left( {\dfrac{{{a^5}}}{{{a^3}}}} \right) \times {a^8} = {a^{10}}$

Hence, the required solution is $\left( {\dfrac{{{a^5}}}{{{a^3}}}} \right) \times {a^8} = {a^{10}}$.

xi) $\dfrac{{{4^5} \times {a^8}{b^3}}}{{{4^5} \times {a^5}{b^2}}}$

Ans: The given expression is $\dfrac{{{4^5} \times {a^8}{b^3}}}{{{4^5} \times {a^5}{b^2}}}$

By laws of exponents, we have  ${a^m} \div {a^n} = {a^{m - n}}$ .

So, we can write

$\dfrac{{{4^5} \times {a^8}{b^3}}}{{{4^5} \times {a^5}{b^2}}} = {4^{5 - 5}} \times {a^{8 - 5}} \times {b^{3 - 2}}$

$\dfrac{{{4^5} \times {a^8}{b^3}}}{{{4^5} \times {a^5}{b^2}}} = {4^0} \times {a^3} \times {b^1}$

We have ${a^0} = 1$

$\dfrac{{{4^5} \times {a^8}{b^3}}}{{{4^5} \times {a^5}{b^2}}} = 1 \times {a^3} \times b$

By simplifying, 

$\dfrac{{{4^5} \times {a^8}{b^3}}}{{{4^5} \times {a^5}{b^2}}} = {a^3}b$

Hence, the required solution is $\dfrac{{{4^5} \times {a^8}{b^3}}}{{{4^5} \times {a^5}{b^2}}} = {a^3}b$.

xii) ${\left( {{2^3} \times 2} \right)^2}$

Ans: The given expression is ${\left( {{2^3} \times 2} \right)^2}$

By laws of exponents, we have ${a^m} \times {a^n} = {a^{m + n}}$ .

So, we can write

${\left( {{2^3} \times 2} \right)^2} = {\left( {{2^{3 + 1}}} \right)^2}$

${\left( {{2^3} \times 2} \right)^2} = {\left( {{2^4}} \right)^2}$

By laws of exponents, we have ${\left( {{a^m}} \right)^n} = {a^{m \times n}}$

So, we can write

${\left( {{2^3} \times 2} \right)^2} = {2^{4 \times 2}}$

${\left( {{2^3} \times 2} \right)^2} = {2^8}$

Hence, the required solution is ${\left( {{2^3} \times 2} \right)^2} = {2^8}$.

3. Say true or false and justify your answer:

i) $10 \times {10^{11}} = {100^{11}}$

Ans: The given expression is $10 \times {10^{11}} = {100^{11}}$

Taking left hand side,

By laws of exponents ${a^m} \times {a^n} = {a^{m + n}}$  we can write,

$10 \times {10^{11}} = {10^{1 + 11}}$

$10 \times {10^{11}} = {10^{12}}$

Taking right hand side,

${100^{11}} = {\left( {{{10}^2}} \right)^{11}}$

${100^{11}} = {10^{2 \times 11}}$

${100^{11}} = {10^{22}}$

So, ${\text{L}}{\text{.H}}{\text{.S}} \ne {\text{R}}{\text{.H}}{\text{.S}}$

Hence, the given statement is false.

ii) ${2^3} > {5^2}$

Ans: The given expression is ${2^3} > {5^2}$

Taking left hand side,

${2^3} = 8$

Taking right hand side,

${5^2} = 25$

Since, $25 > 8$

So, ${5^2} > {2^3}$

Hence, the given statement is false.

iii) ${2^3} \times {3^2} = {6^5}$

Ans: The given expression is ${2^3} \times {3^2} = {6^5}$

Taking left hand side,

${2^3} \times {3^2} = 8 \times 9$

${2^3} \times {3^2} = 72$

Taking right hand side,

${6^5} = 7776$

So,${2^3} \times {3^2} \ne {6^5}$

Hence, the given statement is false.

iv) ${3^0} = {\left( {1000} \right)^0}$

Ans: The given expression is ${3^0} = {\left( {1000} \right)^0}$

Taking left hand side,

Since, ${a^0} = 1$

${3^0} = 1$

Taking right hand side,

Since, ${a^0} = 1$

${\left( {1000} \right)^0} = 1$

So,${3^0} = {\left( {1000} \right)^0}$

Hence, the given statement is true.

4. Express each of the following as a product of prime factors only in exponential form:

i) $108 \times 192$

Ans: The given expression is $108 \times 192$

Finding prime factors of$108$,

Finding prime factors of 108

So, $108$can be express as

$108 = 2 \times 2 \times 3 \times 3 \times 3$

$108 = {2^2} \times {3^3}$

Finding prime factors of$192$,

Finding prime factors of 192

So, $192$can be express as

$192 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$

$192 = {2^6} \times 3$

So, $108 \times 192 = \left( {{2^2} \times {3^3}} \right) \times \left( {{2^6} \times 3} \right)$

$108 \times 192 = \left( {{2^2} \times {3^3}} \right) \times \left( {{2^6} \times 3} \right)$

Since, ${a^m} \times {a^n} = {a^{m + n}}$

$108 \times 192 = {2^{2 + 6}} \times {3^{3 + 1}}$

$108 \times 192 = {2^8} \times {3^4}$

Hence, the required solution is $108 \times 192 = {2^8} \times {3^4}$.

ii) $270$

Ans: The given expression is $270$

Finding prime factors of$270$,

Finding prime factors of 270

So, $270$can be express as

$270 = 2 \times 3 \times 3 \times 3 \times 5$

$270 = 2 \times {3^3} \times 5$

Hence, the required solution is $270 = 2 \times {3^3} \times 5$.

iii) $729 \times 64$

Ans: The given expression is $729 \times 64$

Finding prime factors of$729$,

Finding prime factors of 729

So, $729$can be express as

$729 = 3 \times 3 \times 3 \times 3 \times 3 \times 3$

$729 = {3^6}$

Finding prime factors of$64$ ,

Finding prime factors of 64

So, $64$can be express as

$64 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$

$64 = {2^6}$

So, $729 \times 64 = {3^6} \times {2^6}$

Hence, the required solution is $729 \times 64 = {3^6} \times {2^6}$ .


iii) $768$

Ans: The given expression is $768$

Finding prime factors of$768$,

Finding prime factors of 768

So, $768$can be express as

$768 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3$

$768 = {2^8} \times 3$

Hence, the required solution is $768 = {2^8} \times 3$.

5. Simplify:

i) $\dfrac{{{{\left( {{2^5}} \right)}^2} \times {7^3}}}{{{8^3} \times 7}}$

Ans: The given expression is $\dfrac{{{{\left( {{2^5}} \right)}^2} \times {7^3}}}{{{8^3} \times 7}}$

$8$can be written as,

$8 = {2^3}$

Then the given expression becomes,

$\dfrac{{{{\left( {{2^5}} \right)}^2} \times {7^3}}}{{{8^3} \times 7}} = \dfrac{{{{\left( {{2^5}} \right)}^2} \times {7^3}}}{{{{\left( {{2^3}} \right)}^3} \times 7}}$

By laws of exponents, we have ${\left( {{a^m}} \right)^n} = {a^{m \times n}}$

So, we can write

$\dfrac{{{{\left( {{2^5}} \right)}^2} \times {7^3}}}{{{8^3} \times 7}} = \dfrac{{{2^{\left( {5 \times 2} \right)}} \times {7^3}}}{{{2^{\left( {3 \times 3} \right)}} \times 7}}$

$\dfrac{{{{\left( {{2^5}} \right)}^2} \times {7^3}}}{{{8^3} \times 7}} = \dfrac{{{2^{10}} \times {7^3}}}{{{2^9} \times 7}}$

By laws of exponents, we have  ${a^m} \div {a^n} = {a^{m - n}}$ .

So, we can write

$\dfrac{{{{\left( {{2^5}} \right)}^2} \times {7^3}}}{{{8^3} \times 7}} = {2^{10 - 9}} \times {7^{3 - 1}}$

$\dfrac{{{{\left( {{2^5}} \right)}^2} \times {7^3}}}{{{8^3} \times 7}} = {2^1} \times {7^2}$

Since, ${7^2} = 49$

$\dfrac{{{{\left( {{2^5}} \right)}^2} \times {7^3}}}{{{8^3} \times 7}} = 2 \times 49$

$\dfrac{{{{\left( {{2^5}} \right)}^2} \times {7^3}}}{{{8^3} \times 7}} = 98$

Hence, the required solution is $\dfrac{{{{\left( {{2^5}} \right)}^2} \times {7^3}}}{{{8^3} \times 7}} = 98$.

ii) $\dfrac{{25 \times {5^2} \times {t^8}}}{{{{10}^3} \times {t^4}}}$

Ans:  The given expression is $\dfrac{{25 \times {5^2} \times {t^8}}}{{{{10}^3} \times {t^4}}}$

$25$can be written as,

$25 = {5^2}$

$10$can be express as,

$10 = 2 \times 5$

Then the given expression becomes,

$\dfrac{{25 \times {5^2} \times {t^8}}}{{{{10}^3} \times {t^4}}} = \dfrac{{{5^2} \times {5^2} \times {t^8}}}{{{{\left( {2 \times 5} \right)}^3} \times {t^4}}}$

By laws of exponents, we have ${\left( {a \times b} \right)^m} = {a^m} \times {b^m}$

So, we can write

$\dfrac{{25 \times {5^2} \times {t^8}}}{{{{10}^3} \times {t^4}}} = \dfrac{{{5^2} \times {5^2} \times {t^8}}}{{{2^3} \times {5^3} \times {t^4}}}$

By laws of exponents, we have  ${a^m} \times {a^n} = {a^{m + n}}$ .

So, we can write

$\dfrac{{25 \times {5^2} \times {t^8}}}{{{{10}^3} \times {t^4}}} = \dfrac{{{5^{2 + 2}} \times {t^8}}}{{{2^3} \times {5^3} \times {t^4}}}$

$\dfrac{{25 \times {5^2} \times {t^8}}}{{{{10}^3} \times {t^4}}} = \dfrac{{{5^4} \times {t^8}}}{{{2^3} \times {5^3} \times {t^4}}}$

By laws of exponents, we have  ${a^m} \div {a^n} = {a^{m - n}}$ .

So, we can write

$\dfrac{{25 \times {5^2} \times {t^8}}}{{{{10}^3} \times {t^4}}} = \dfrac{{{5^{4 - 3}} \times {t^{8 - 4}}}}{{{2^3}}}$

$\dfrac{{25 \times {5^2} \times {t^8}}}{{{{10}^3} \times {t^4}}} = \dfrac{{{5^1} \times {t^4}}}{{{2^3}}}$

Since, ${2^3} = 8$

$\dfrac{{25 \times {5^2} \times {t^8}}}{{{{10}^3} \times {t^4}}} = \dfrac{{5{t^4}}}{8}$

Hence, the required solution is $\dfrac{{25 \times {5^2} \times {t^8}}}{{{{10}^3} \times {t^4}}} = \dfrac{{5{t^4}}}{8}$.

iii) $\dfrac{{{3^5} \times {{10}^5} \times 25}}{{{5^7} \times {6^5}}}$

Ans:  The given expression is $\dfrac{{{3^5} \times {{10}^5} \times 25}}{{{5^7} \times {6^5}}}$

$25$can be written as,

$25 = {5^2}$

$10$can be express as,

$10 = 2 \times 5$

$6$can be express as,

$6 = 2 \times 3$

Then the given expression becomes,

$\dfrac{{{3^5} \times {{10}^5} \times 25}}{{{5^7} \times {6^5}}} = \dfrac{{{3^5} \times {{\left( {2 \times 5} \right)}^5} \times {5^2}}}{{{5^7} \times {{\left( {2 \times 3} \right)}^5}}}$

By laws of exponents, we have ${\left( {a \times b} \right)^m} = {a^m} \times {b^m}$

So, we can write

$\dfrac{{{3^5} \times {{10}^5} \times 25}}{{{5^7} \times {6^5}}} = \dfrac{{{3^5} \times {2^5} \times {5^5} \times {5^2}}}{{{5^7} \times {2^5} \times {3^5}}}$

By laws of exponents, we have  ${a^m} \times {a^n} = {a^{m + n}}$ .

So, we can write

$\dfrac{{{3^5} \times {{10}^5} \times 25}}{{{5^7} \times {6^5}}} = \dfrac{{{3^5} \times {2^5} \times {5^{5 + 2}}}}{{{5^7} \times {2^5} \times {3^5}}}$

$\dfrac{{{3^5} \times {{10}^5} \times 25}}{{{5^7} \times {6^5}}} = \dfrac{{{3^5} \times {2^5} \times {5^7}}}{{{5^7} \times {2^5} \times {3^5}}}$

By laws of exponents, we have  ${a^m} \div {a^n} = {a^{m - n}}$ .

So, we can write

$\dfrac{{{3^5} \times {{10}^5} \times 25}}{{{5^7} \times {6^5}}} = {3^{5 - 5}} \times {2^{5 - 5}} \times {5^{7 - 7}}$

$\dfrac{{{3^5} \times {{10}^5} \times 25}}{{{5^7} \times {6^5}}} = {3^0} \times {2^0} \times {5^0}$

Since, ${a^0} = 1$

$\dfrac{{{3^5} \times {{10}^5} \times 25}}{{{5^7} \times {6^5}}} = 1 \times 1 \times 1$

$\dfrac{{{3^5} \times {{10}^5} \times 25}}{{{5^7} \times {6^5}}} = 1$

Hence, the required solution is $\dfrac{{{3^5} \times {{10}^5} \times 25}}{{{5^7} \times {6^5}}} = 1$.

NCERT Solutions For Class 7 Maths Chapter 13 Exponents and Powers Exercise 13.2

Opting for the NCERT solutions for Ex 13.2 Class 7 Maths is considered as the best option for the CBSE students when it comes to exam preparation. This chapter consists of many exercises. Out of which we have provided the Exercise 13.2 Class 7 Maths NCERT solutions on this page in PDF format. You can download this solution as per your convenience or you can study it directly from our website/ app online.

Vedantu in-house subject matter experts have solved the problems/ questions from the exercise with the utmost care and by following all the guidelines by CBSE. Class 7 students who are thorough with all the concepts from the Maths textbook and quite well-versed with all the problems from the exercises given in it, then any student can easily score the highest possible marks in the final exam. With the help of this Class 7 Maths Chapter 13 Exercise 13.2 solutions, students can easily understand the pattern of questions that can be asked in the exam from this chapter and also learn the marks weightage of the chapter. So that they can prepare themselves accordingly for the final exam.

Besides these NCERT solutions for Class 7 Maths Chapter 13 Exercise 13.2, there are plenty of exercises in this chapter which contain innumerable questions as well. All these questions are solved/answered by our in-house subject experts as mentioned earlier. Hence all of these are bound to be of superior quality and anyone can refer to these during the time of exam preparation. In order to score the best possible marks in the class, it is really important to understand all the concepts of the textbooks and solve the problems from the exercises given next to it.

Do not delay any more. Download the NCERT solutions for Class 7 Maths Chapter 13 Exercise 13.2 from Vedantu website now for better exam preparation. If you have the Vedantu app in your phone, you can download the same through the app as well. The best part of these solutions is these can be accessed both online and offline as well.