
Two finite sets have $m$ & $n$ elements, if the total number of subsets of the first set is 56 more than the total number of subsets of the second. The value of $m$ & $n$ are:
$
A.{\text{ }}7,6 \\
B.{\text{ }}6,3 \\
C.{\text{ }}5,1 \\
D.{\text{ }}8,7 \\
$
Answer
232.8k+ views
Hint- For any set with a given $x$ number of elements, the total number of subsets that can be formed from that set is ${2^x}$ . Use this property to reach the answer.
Let set $A$ has $m$ number of elements.
And let set $B$ has an $n$ number of elements.
As we know that for any set with $x$ number of elements, the total number of subsets is ${2^x}$.
Total number of subsets of $A = {2^m}$ .
Total number of subsets of $B = {2^n}$ .
According to the question number of subsets of A is 56 more than that of B
$ \Rightarrow {2^m} - {2^n} = 56$
Taking ${2^n}$ common from the LHS
$ \Rightarrow {2^n}\left( {{2^{m - n}} - 1} \right) = 56$
So from the above equation we have
${2^n}$ is even.[power of 2]
${2^{m - n}} - 1$ is odd. [power of 2 subtracted by one]
56 can be simplified as a product of odd and even as $56 = 8 \times 7$
Now,
$
56 = 8 \times 7 = {2^3} \times 7 \\
\Rightarrow {2^n}\left( {{2^{m - n}} - 1} \right) = {2^3} \times 7 \\
\Rightarrow n = 3 \\
$
Now solving for $m$ with the help of the second term.
$
8\left( {{2^{m - 3}} - 1} \right) = 8 \times 7 \\
\Rightarrow {2^{m - 3}} - 1 = 7 \\
\Rightarrow {2^{m - 3}} = 7 + 1 = 8 \\
\Rightarrow {2^{m - 3}} = {2^3} \\
$
Now comparing the powers of both the side, we get
$
\Rightarrow m - 3 = 3 \\
\Rightarrow m = 6 \\
$
So, we have $m = 6$ & $n = 3$ .
Hence, option B is the correct option.
Note- For solving questions related to sets, basic properties like number of subsets to be formed is very important and must be remembered. The above equation had 2 unknown variables and only one equation. In order to solve such equations try to use the practical aspect of the question as in the above case we have considered that the number of subsets will be integer.
Let set $A$ has $m$ number of elements.
And let set $B$ has an $n$ number of elements.
As we know that for any set with $x$ number of elements, the total number of subsets is ${2^x}$.
Total number of subsets of $A = {2^m}$ .
Total number of subsets of $B = {2^n}$ .
According to the question number of subsets of A is 56 more than that of B
$ \Rightarrow {2^m} - {2^n} = 56$
Taking ${2^n}$ common from the LHS
$ \Rightarrow {2^n}\left( {{2^{m - n}} - 1} \right) = 56$
So from the above equation we have
${2^n}$ is even.[power of 2]
${2^{m - n}} - 1$ is odd. [power of 2 subtracted by one]
56 can be simplified as a product of odd and even as $56 = 8 \times 7$
Now,
$
56 = 8 \times 7 = {2^3} \times 7 \\
\Rightarrow {2^n}\left( {{2^{m - n}} - 1} \right) = {2^3} \times 7 \\
\Rightarrow n = 3 \\
$
Now solving for $m$ with the help of the second term.
$
8\left( {{2^{m - 3}} - 1} \right) = 8 \times 7 \\
\Rightarrow {2^{m - 3}} - 1 = 7 \\
\Rightarrow {2^{m - 3}} = 7 + 1 = 8 \\
\Rightarrow {2^{m - 3}} = {2^3} \\
$
Now comparing the powers of both the side, we get
$
\Rightarrow m - 3 = 3 \\
\Rightarrow m = 6 \\
$
So, we have $m = 6$ & $n = 3$ .
Hence, option B is the correct option.
Note- For solving questions related to sets, basic properties like number of subsets to be formed is very important and must be remembered. The above equation had 2 unknown variables and only one equation. In order to solve such equations try to use the practical aspect of the question as in the above case we have considered that the number of subsets will be integer.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

JEE Main 2026 Exam Centres (OUT) – Latest Examination Centre and Cities List

JEE Main 2026 January 21 Shift 2 Question Papers and Analysis OUT Check Student Reactions

JEE Main 2026 Dress Code for Male & Female Candidates

JEE Main 2025 24 Jan Shift 2 Question Paper with Solutions

JEE Main 2026 Exam Day: Guidelines, Dress Code & Important Documents

Other Pages
Circles Class 9 Maths Chapter 9 CBSE Notes - 2025-26

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

One Day International Cricket- India Vs New Zealand Records and Score

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

Highest T20 Scores in Cricket: Top Records & Stats 2025

Makar Sankranti Wishes Messages Quotes in Hindi Marathi English Kannada


