The sum of the series \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}\] is
a) \[\sin \left( \dfrac{\pi }{180} \right)+\sin \left( \dfrac{\pi }{360} \right)+\sin \left( \dfrac{\pi }{540} \right)\]
b) \[\sin \left( \dfrac{\pi }{6} \right)+\sin \left( \dfrac{\pi }{30} \right)+\sin \left( \dfrac{\pi }{120} \right)+\sin \left( \dfrac{\pi }{360} \right)\]
c) \[\sin \left( \dfrac{\pi }{6} \right)+\sin \left( \dfrac{\pi }{30} \right)+\sin \left( \dfrac{\pi }{120} \right)+\sin \left( \dfrac{\pi }{360} \right)+\sin \left( \dfrac{\pi }{720} \right)\]
d) \[\sin \left( \dfrac{\pi }{180} \right)+\sin \left( \dfrac{\pi }{360} \right)\]
Last updated date: 20th Mar 2023
•
Total views: 305.7k
•
Views today: 2.85k
Answer
305.7k+ views
Hint: The value of \[sine\] function for any argument that is an integral multiple of \[\pi \] is equal to \[0\] , i.e. \[\sin (n\pi )=0\] where \[n=1,2,3,4...\] and so on.
Before we proceed with the solution , we must know some properties of the \[sine\] function .
a) The value of \[\sin (\pi )\] is equal to \[0\].
b) \[\sin (\pi +\theta )=-\sin \theta \]
Now , to find the value of \[\sin (2\pi )\] , we will substitute \[\theta =\pi \] in property \[(b)\].
So , we get \[\sin (2\pi )=\sin \left( \pi +\pi \right)=-\sin \pi =0\] .
Similarly , \[\sin \left( 3\pi \right)=\sin \left( \pi +2\pi \right)=-\sin 2\pi =0\]. So , following the pattern , we can conclude that the value of \[sine\] function for any argument that is an integral multiple of \[\pi \] is equal to \[0\], i.e.
\[\sin (n\pi )=0\] where \[n=1,2,3,4...\]and so on.
Now , coming to the question , we need to find the value of the sum \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}\].
First , we will open the summation sign and write it as a sum of a series.
So , we can write \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}\] as \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}=\sin \left( \dfrac{\pi }{720} \right)+\sin \left( \dfrac{2\pi }{720} \right)+\sin \left( \dfrac{6\pi }{720} \right)+\sin \left( \dfrac{24\pi }{720} \right)+\sin \left( \dfrac{120\pi }{720} \right)....\]
Now , when \[n=6\] , we get \[\sin \left( \dfrac{n!\pi }{720} \right)=\sin \left( \dfrac{6!\pi }{720} \right)=\sin \left( \dfrac{720\pi }{720} \right)=\sin \pi \].
But , from the property\[(a)\] of \[sine\] function , we know the value of \[\sin (\pi )\] is equal to \[0\].
So , the value of \[\sin \left( \dfrac{n!\pi }{720} \right)\], when \[n=6\] is equal to \[0\].
Now , when \[n=7\], we get \[\sin \left( \dfrac{n!\pi }{720} \right)=\sin \left( \dfrac{7!\pi }{720} \right)\] .
We know , \[n!=n\times (n-1)!\].
So , \[7!=7\times 6!=7\times 720\].
So , \[\sin \left( \dfrac{7!\pi }{720} \right)=\sin \left( \dfrac{7\times 720\pi }{720} \right)=\sin 7\pi \].
Now , we know , the value of sine function for any argument that is an integral multiple of \[\pi \] is equal to \[0\].
So , \[\sin 7\pi =0\].
Similarly , for \[n=8,9,....\]and so on , we can see that the value of \[\sin \left( \dfrac{n!\pi }{720} \right)\] is equal to \[0\].
So , we can write the sum as \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}=\sin \left( \dfrac{\pi }{720} \right)+\sin \left( \dfrac{2\pi }{720} \right)+\sin \left( \dfrac{6\pi }{720} \right)+\sin \left( \dfrac{24\pi }{720} \right)+\sin \left( \dfrac{120\pi }{720} \right)+0+0+0....\]
So , \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}=\sin \left( \dfrac{\pi }{720} \right)+\sin \left( \dfrac{2\pi }{720} \right)+\sin \left( \dfrac{6\pi }{720} \right)+\sin \left( \dfrac{24\pi }{720} \right)+\sin \left( \dfrac{120\pi }{720} \right)\]
Or , \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}=\sin \left( \dfrac{\pi }{720} \right)+\sin \left( \dfrac{\pi }{360} \right)+\sin \left( \dfrac{\pi }{120} \right)+\sin \left( \dfrac{\pi }{30} \right)+\sin \left( \dfrac{\pi }{6} \right)\]
Or , \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}=\sin \left( \dfrac{\pi }{6} \right)+\sin \left( \dfrac{\pi }{30} \right)+\sin \left( \dfrac{\pi }{120} \right)+\sin \left( \dfrac{\pi }{360} \right)+\sin \left( \dfrac{\pi }{720} \right)\]
Hence , the value of the sum of the series \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}\] is equal to \[\sin \left( \dfrac{\pi }{6} \right)+\sin \left( \dfrac{\pi }{30} \right)+\sin \left( \dfrac{\pi }{120} \right)+\sin \left( \dfrac{\pi }{360} \right)+\sin \left( \dfrac{\pi }{720} \right)\].
Therefore , option (c) is the correct answer.
Note: Students generally get confused between the values of \[\sin \pi \] and \[\cos \pi \]. $\sin \pi =0$ and $\cos \pi =-1$ . Confusion between the values should be avoided as it can lead to wrong answers .
Before we proceed with the solution , we must know some properties of the \[sine\] function .
a) The value of \[\sin (\pi )\] is equal to \[0\].
b) \[\sin (\pi +\theta )=-\sin \theta \]
Now , to find the value of \[\sin (2\pi )\] , we will substitute \[\theta =\pi \] in property \[(b)\].
So , we get \[\sin (2\pi )=\sin \left( \pi +\pi \right)=-\sin \pi =0\] .
Similarly , \[\sin \left( 3\pi \right)=\sin \left( \pi +2\pi \right)=-\sin 2\pi =0\]. So , following the pattern , we can conclude that the value of \[sine\] function for any argument that is an integral multiple of \[\pi \] is equal to \[0\], i.e.
\[\sin (n\pi )=0\] where \[n=1,2,3,4...\]and so on.
Now , coming to the question , we need to find the value of the sum \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}\].
First , we will open the summation sign and write it as a sum of a series.
So , we can write \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}\] as \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}=\sin \left( \dfrac{\pi }{720} \right)+\sin \left( \dfrac{2\pi }{720} \right)+\sin \left( \dfrac{6\pi }{720} \right)+\sin \left( \dfrac{24\pi }{720} \right)+\sin \left( \dfrac{120\pi }{720} \right)....\]
Now , when \[n=6\] , we get \[\sin \left( \dfrac{n!\pi }{720} \right)=\sin \left( \dfrac{6!\pi }{720} \right)=\sin \left( \dfrac{720\pi }{720} \right)=\sin \pi \].
But , from the property\[(a)\] of \[sine\] function , we know the value of \[\sin (\pi )\] is equal to \[0\].
So , the value of \[\sin \left( \dfrac{n!\pi }{720} \right)\], when \[n=6\] is equal to \[0\].
Now , when \[n=7\], we get \[\sin \left( \dfrac{n!\pi }{720} \right)=\sin \left( \dfrac{7!\pi }{720} \right)\] .
We know , \[n!=n\times (n-1)!\].
So , \[7!=7\times 6!=7\times 720\].
So , \[\sin \left( \dfrac{7!\pi }{720} \right)=\sin \left( \dfrac{7\times 720\pi }{720} \right)=\sin 7\pi \].
Now , we know , the value of sine function for any argument that is an integral multiple of \[\pi \] is equal to \[0\].
So , \[\sin 7\pi =0\].
Similarly , for \[n=8,9,....\]and so on , we can see that the value of \[\sin \left( \dfrac{n!\pi }{720} \right)\] is equal to \[0\].
So , we can write the sum as \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}=\sin \left( \dfrac{\pi }{720} \right)+\sin \left( \dfrac{2\pi }{720} \right)+\sin \left( \dfrac{6\pi }{720} \right)+\sin \left( \dfrac{24\pi }{720} \right)+\sin \left( \dfrac{120\pi }{720} \right)+0+0+0....\]
So , \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}=\sin \left( \dfrac{\pi }{720} \right)+\sin \left( \dfrac{2\pi }{720} \right)+\sin \left( \dfrac{6\pi }{720} \right)+\sin \left( \dfrac{24\pi }{720} \right)+\sin \left( \dfrac{120\pi }{720} \right)\]
Or , \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}=\sin \left( \dfrac{\pi }{720} \right)+\sin \left( \dfrac{\pi }{360} \right)+\sin \left( \dfrac{\pi }{120} \right)+\sin \left( \dfrac{\pi }{30} \right)+\sin \left( \dfrac{\pi }{6} \right)\]
Or , \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}=\sin \left( \dfrac{\pi }{6} \right)+\sin \left( \dfrac{\pi }{30} \right)+\sin \left( \dfrac{\pi }{120} \right)+\sin \left( \dfrac{\pi }{360} \right)+\sin \left( \dfrac{\pi }{720} \right)\]
Hence , the value of the sum of the series \[\sum\limits_{n=1}^{\infty }{\sin \left( \dfrac{n!\pi }{720} \right)}\] is equal to \[\sin \left( \dfrac{\pi }{6} \right)+\sin \left( \dfrac{\pi }{30} \right)+\sin \left( \dfrac{\pi }{120} \right)+\sin \left( \dfrac{\pi }{360} \right)+\sin \left( \dfrac{\pi }{720} \right)\].
Therefore , option (c) is the correct answer.
Note: Students generally get confused between the values of \[\sin \pi \] and \[\cos \pi \]. $\sin \pi =0$ and $\cos \pi =-1$ . Confusion between the values should be avoided as it can lead to wrong answers .
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Name the Largest and the Smallest Cell in the Human Body ?

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main

A sample of an ideal gas is expanded from 1dm3 to 3dm3 class 11 chemistry CBSE
