
The maximum number of equivalence relations on the set $A=\left\{ 1,2,3 \right\}$ is
(a) $1$
(b) $2$
(c) $3$
(d) $5$
Answer
515.3k+ views
Hint: Will find all the possible relations that are equivalence i.e. we will find all the possible relations that are symmetric, reflexive and transitive at the same time.
Before finding the maximum number of equivalence relation on the set $A=\left\{ 1,2,3
\right\}$, we will first discuss what do we mean by the equivalence relation?
A relation is said to be an equivalence relation if it is,
1) Reflexive - A relation $R$ on a set $A$ is said to be reflexive if $\left( a,a \right)$ is there in
relation $R$ $\forall a\in A$.
2) Symmetric – A relation $R$ on a set $A$ is said to be symmetric when, if $\left( a,b \right)$ is
there in the relation, then $\left( b,a \right)$ should also be there in the relation for $a,b\in A$.
3) Transitive – A relation $R$ on a set $A$ is said to be transitive when, if $\left( a,b \right)$ and
$\left( b,c \right)$ are there in the relation, then $\left( a,c \right)$ should also be there in the
relation for $a,b,c\in A$.
For a relation which is defined on the set $A=\left\{ 1,2,3 \right\}$, all possible relations that are
equivalence are,
1) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right) \right\}$
2) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}$
3) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,3 \right),\left( 3,1 \right) \right\}$
4) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
5) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right),\left( 1,3
\right),\left( 3,1 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
All the possible relations on the set $A=\left\{ 1,2,3 \right\}$ that are equivalence are made in the
above list. So, the maximum number of equivalence relations that are possible on the set $A=\left\{
1,2,3 \right\}$ is equal to 5.
Therefore option (d) is correct answer
Note: There is a possibility that one may make mistakes while writing all the possible equivalence relation that can be formed on the given set $A$. To avoid such mistakes, one can follow these steps. First write down the reflexive relation. Then start writing down the relations that are both reflexive as well as symmetric taking two numbers from set $A$ at a single time. Finally, write down the union relation of all the relations that are generated from the second step.
Before finding the maximum number of equivalence relation on the set $A=\left\{ 1,2,3
\right\}$, we will first discuss what do we mean by the equivalence relation?
A relation is said to be an equivalence relation if it is,
1) Reflexive - A relation $R$ on a set $A$ is said to be reflexive if $\left( a,a \right)$ is there in
relation $R$ $\forall a\in A$.
2) Symmetric – A relation $R$ on a set $A$ is said to be symmetric when, if $\left( a,b \right)$ is
there in the relation, then $\left( b,a \right)$ should also be there in the relation for $a,b\in A$.
3) Transitive – A relation $R$ on a set $A$ is said to be transitive when, if $\left( a,b \right)$ and
$\left( b,c \right)$ are there in the relation, then $\left( a,c \right)$ should also be there in the
relation for $a,b,c\in A$.
For a relation which is defined on the set $A=\left\{ 1,2,3 \right\}$, all possible relations that are
equivalence are,
1) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right) \right\}$
2) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right) \right\}$
3) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,3 \right),\left( 3,1 \right) \right\}$
4) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
5) $\left\{ \left( 1,1 \right),\left( 2,2 \right),\left( 3,3 \right),\left( 1,2 \right),\left( 2,1 \right),\left( 1,3
\right),\left( 3,1 \right),\left( 2,3 \right),\left( 3,2 \right) \right\}$
All the possible relations on the set $A=\left\{ 1,2,3 \right\}$ that are equivalence are made in the
above list. So, the maximum number of equivalence relations that are possible on the set $A=\left\{
1,2,3 \right\}$ is equal to 5.
Therefore option (d) is correct answer
Note: There is a possibility that one may make mistakes while writing all the possible equivalence relation that can be formed on the given set $A$. To avoid such mistakes, one can follow these steps. First write down the reflexive relation. Then start writing down the relations that are both reflexive as well as symmetric taking two numbers from set $A$ at a single time. Finally, write down the union relation of all the relations that are generated from the second step.
Recently Updated Pages
JEE Mains 2026: Exam Dates and City Intimation slip OUT, Registration Open, Syllabus & Eligibility

JEE Main Candidate Login 2026 and Registration Portal | Form Access

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Half Life of Zero Order Reaction for JEE

Understanding Displacement and Velocity Time Graphs

Understanding How a Current Loop Acts as a Magnetic Dipole

JEE Main 2026 Exam Date (OUT): Session 1 and 2 Schedule, Registration and More

BITSAT 2026 Registration Open: Check Last Date, Exam Dates & Correction Window

Other Pages
JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry - 2025-26

NCERT Solutions For Class 10 Maths Chapter 10 Conic Sections Exercise 10.4 - 2025-26

Understanding Inertial and Non-Inertial Frames of Reference

Cbse Class 11 Maths Notes Chapter 9 Straight Lines

