
The force between two short electric dipoles placed on the same axis at a distance $R$ varies as?
A) ${R^{ - 1}}$
B) ${R^{ - 2}}$
C) ${R^{ - 3}}$
D) ${R^{ - 4}}$
Answer
220.5k+ views
Hint: Force acting between two electric dipoles depends on the potential energy of the electric dipoles. If the dipole moment is constant, the net force is zero, because the charges get pulled equally and oppositely.
Complete step by step solution:
Here it is given in the question that two short electric dipoles on the same axis are at a distance of $R$ from each other. We are asked to find how the force acting in between them varies in the term of $R$.
We know the electric produced by an electric dipole in a n axial position is given by the equation,
$E = \dfrac{{2KP}}{{{R^3}}}$
Where, $K$ is the electrostatic constant.
The value of the electrostatic constant is given by, $K = \dfrac{1}{{4\pi {\varepsilon _0}}}$
$P$ is the electric dipole moment.
Now, potential energy of the dipole, $U = - PE\cos \theta $
Where, $\theta $ is the angle between the electric field and dipole, here it is placed in the same axis and thus the angle between the electric field and dipole will be zero.
$ \Rightarrow U = - PE\cos 0$
$ \therefore U = - PE$
Substituting the value of $E$ in this equation, we get,
$ \therefore U = - P \times \dfrac{{2KP'}}{{{R^3}}}$
We need to find the value of force acting between the two electric dipoles.
Force acting is given by the equation,
$F = - \dfrac{{dU}}{{dR}}$
Applying the value of the potential energy to this equation, we get,
$ \Rightarrow F = - \dfrac{d}{{dR}}\left( {\dfrac{{ - 2KPP'}}{{{R^3}}}} \right)$
$ \Rightarrow F = 2KPP'\dfrac{d}{{dR}}\left( {\dfrac{1}{{{R^3}}}} \right)$
$ \therefore F = - 6KPP'\dfrac{1}{{{R^4}}}$
There for the force between two short electric dipole placed on the same axis at a distance $R$ is proportional to $\dfrac{1}{{{R^4}}}$ or ${R^{ - 4}}.$
So the final answer is option (D), ${R^{ - 4}}$.
Note: An electric dipole is defined as a couple of opposite charges $q$ and $ - q$separated by a distance $R$. By default, the direction of electric dipoles in space is always from negative charge $ - q$ to positive charge $q$. The midpoint $q$ and $ - q$ is called the centre of the dipole.
Complete step by step solution:
Here it is given in the question that two short electric dipoles on the same axis are at a distance of $R$ from each other. We are asked to find how the force acting in between them varies in the term of $R$.
We know the electric produced by an electric dipole in a n axial position is given by the equation,
$E = \dfrac{{2KP}}{{{R^3}}}$
Where, $K$ is the electrostatic constant.
The value of the electrostatic constant is given by, $K = \dfrac{1}{{4\pi {\varepsilon _0}}}$
$P$ is the electric dipole moment.
Now, potential energy of the dipole, $U = - PE\cos \theta $
Where, $\theta $ is the angle between the electric field and dipole, here it is placed in the same axis and thus the angle between the electric field and dipole will be zero.
$ \Rightarrow U = - PE\cos 0$
$ \therefore U = - PE$
Substituting the value of $E$ in this equation, we get,
$ \therefore U = - P \times \dfrac{{2KP'}}{{{R^3}}}$
We need to find the value of force acting between the two electric dipoles.
Force acting is given by the equation,
$F = - \dfrac{{dU}}{{dR}}$
Applying the value of the potential energy to this equation, we get,
$ \Rightarrow F = - \dfrac{d}{{dR}}\left( {\dfrac{{ - 2KPP'}}{{{R^3}}}} \right)$
$ \Rightarrow F = 2KPP'\dfrac{d}{{dR}}\left( {\dfrac{1}{{{R^3}}}} \right)$
$ \therefore F = - 6KPP'\dfrac{1}{{{R^4}}}$
There for the force between two short electric dipole placed on the same axis at a distance $R$ is proportional to $\dfrac{1}{{{R^4}}}$ or ${R^{ - 4}}.$
So the final answer is option (D), ${R^{ - 4}}$.
Note: An electric dipole is defined as a couple of opposite charges $q$ and $ - q$separated by a distance $R$. By default, the direction of electric dipoles in space is always from negative charge $ - q$ to positive charge $q$. The midpoint $q$ and $ - q$ is called the centre of the dipole.
Recently Updated Pages
The average and RMS value of voltage for square waves class 12 physics JEE_Main

If a wire of resistance R is stretched to double of class 12 physics JEE_Main

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Explain the construction and working of a GeigerMuller class 12 physics JEE_Main

Mass vs Weight: Key Differences Explained for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Dual Nature of Radiation and Matter Class 12 Physics Chapter 11 CBSE Notes - 2025-26

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

