
The favourable conditions for a spontaneous reaction are;
(A) $T\Delta S > \Delta H,\Delta H = + ve,\Delta S = + ve$
(B) $T\Delta S > \Delta H,\Delta H = + ve,\Delta S = - ve$
(C) $T\Delta S = \Delta H,\Delta H = + ve,\Delta s = - ve$
(D) $T\Delta S = \Delta H,\Delta H = + ve,\Delta s = + ve$
Answer
224.4k+ views
Hint: Spontaneous reactions are reactions, that once started, continues by itself without further input of energy from the outside.
These spontaneous reactions are mainly accompanied by the high entropy mean high disorder in the system.
Step by step solution:
The free energy change for the spontaneous reactions is as follows.
$\Delta G = \Delta H - T\Delta S$
For spontaneous reactions the free energy change is always negative.
The reaction is spontaneous if $\Delta G < 0$.
\[\Delta H - T\Delta S < 0\]
\[T\Delta S > \Delta H\]
$T\Delta S > \Delta H,\Delta H = + ve,\Delta S = + ve$
In option – “A”
$\Delta H$ is +ve and $\Delta S$is +ve and \[T\Delta S > \Delta H\].
$0 > \Delta H - T\Delta S$
$0 > \Delta G$
Hence, the process is spontaneous.
Therefore, the correct option –“A”.
Additional information: A spontaneous reaction is a change that has a natural tendency to happen under certain conditions. Example : Oxidation of iron
Most of the exothermic reactions tend to proceed spontaneously and endothermic reactions tend to be non – spontaneous.
The spontaneity of any reaction can be predicted by calculating Gibbs free energy .
The Gibbs free energy is indicated by the following equation.
$\Delta G = \Delta H - T\Delta S$
$\Delta G$ = Standard Gibbs free energy
$\Delta H$ = Standard enthalpy change
T = Temperature
\[\Delta S\] = Standard entropy change
If \[\Delta G < 0\] the change is spontaneous
If \[\Delta G < 0\] ,the change is non spontaneous.
Note:
- If \[\Delta H = - ve\] and \[\Delta S = + ve\] the reaction is spontaneous in forward direction.
- If \[\Delta H = + ve\] and \[\Delta S = - ve\] the reaction is spontaneous in the reverse direction.
- If \[\Delta G < 0\], the reaction is spontaneous in the forward direction.
- If \[\Delta G > 0\] , the reaction is nonspontaneous in the forward direction
- If \[\Delta G = 0\], the system will be present in equilibrium state and this reaction does not prefer any direction i.e., either back ward or forward reaction.
These spontaneous reactions are mainly accompanied by the high entropy mean high disorder in the system.
Step by step solution:
The free energy change for the spontaneous reactions is as follows.
$\Delta G = \Delta H - T\Delta S$
For spontaneous reactions the free energy change is always negative.
The reaction is spontaneous if $\Delta G < 0$.
\[\Delta H - T\Delta S < 0\]
\[T\Delta S > \Delta H\]
$T\Delta S > \Delta H,\Delta H = + ve,\Delta S = + ve$
In option – “A”
$\Delta H$ is +ve and $\Delta S$is +ve and \[T\Delta S > \Delta H\].
$0 > \Delta H - T\Delta S$
$0 > \Delta G$
Hence, the process is spontaneous.
Therefore, the correct option –“A”.
Additional information: A spontaneous reaction is a change that has a natural tendency to happen under certain conditions. Example : Oxidation of iron
Most of the exothermic reactions tend to proceed spontaneously and endothermic reactions tend to be non – spontaneous.
The spontaneity of any reaction can be predicted by calculating Gibbs free energy .
The Gibbs free energy is indicated by the following equation.
$\Delta G = \Delta H - T\Delta S$
$\Delta G$ = Standard Gibbs free energy
$\Delta H$ = Standard enthalpy change
T = Temperature
\[\Delta S\] = Standard entropy change
If \[\Delta G < 0\] the change is spontaneous
If \[\Delta G < 0\] ,the change is non spontaneous.
Note:
- If \[\Delta H = - ve\] and \[\Delta S = + ve\] the reaction is spontaneous in forward direction.
- If \[\Delta H = + ve\] and \[\Delta S = - ve\] the reaction is spontaneous in the reverse direction.
- If \[\Delta G < 0\], the reaction is spontaneous in the forward direction.
- If \[\Delta G > 0\] , the reaction is nonspontaneous in the forward direction
- If \[\Delta G = 0\], the system will be present in equilibrium state and this reaction does not prefer any direction i.e., either back ward or forward reaction.
Recently Updated Pages
JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Ionisation Energy and Ionisation Potential Explained

Iodoform Reactions - Important Concepts and Tips for JEE

Introduction to Dimensions: Understanding the Basics

Trending doubts
JEE Main 2026: City Intimation Slip and Exam Dates Released, Application Form Closed, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Hybridisation in Chemistry – Concept, Types & Applications

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 4 The D and F Block Elements

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules - 2025-26

