The decrease in the potential energy of a ball of mass $20kg$ which falls from a height of $50cm$ is
(A) $968J$
(B) $98J$
(C) $1980J$
(D) None of these
Answer
88.8k+ views
Hint: We know that the potential energy of a falling body is due to gravity and called gravitational potential energy here, we will use the general formula of the gravitational potential energy of a falling body and using the value of given parameters value, we will solve for the potential energy of the given ball.
Formula Used:
If m is the mass of a body, g is the acceleration due to gravity and h is the height of a body from the surface of the earth then, the potential energy of the body is calculated as
$P.E = mgh$
Complete answer:
We have given that the a ball of mass $m = 20kg$ falls from a height of $h = 50cm = 0.5m$ towards the ground with acceleration due to gravity $g = 9.8m{s^{ - 2}}$.
Now change in potential energy due to change in height so initial height is $h = 0.5m$ and final height is zero as ball hits the ground so, Decrease in potential energy is calculated by using the formula $P.E = mgh$ we get
$
P.E = 20(9.8)0.5 \\
P.E = 98J \\
$
So, the change in potential energy of the falling ball is $98J$
Hence, the correct answer is option (B) $98J$
Note: Here, the units of height are converted using a conversion relation of $1cm = 0.01m$ and gravitational potential energy is the energy possessed by the body when its position is changed in the gravitational field also sometimes for easier calculation the approximate value of acceleration due to gravity is taken as $g = 10m{s^{ - 2}}$.
Formula Used:
If m is the mass of a body, g is the acceleration due to gravity and h is the height of a body from the surface of the earth then, the potential energy of the body is calculated as
$P.E = mgh$
Complete answer:
We have given that the a ball of mass $m = 20kg$ falls from a height of $h = 50cm = 0.5m$ towards the ground with acceleration due to gravity $g = 9.8m{s^{ - 2}}$.
Now change in potential energy due to change in height so initial height is $h = 0.5m$ and final height is zero as ball hits the ground so, Decrease in potential energy is calculated by using the formula $P.E = mgh$ we get
$
P.E = 20(9.8)0.5 \\
P.E = 98J \\
$
So, the change in potential energy of the falling ball is $98J$
Hence, the correct answer is option (B) $98J$
Note: Here, the units of height are converted using a conversion relation of $1cm = 0.01m$ and gravitational potential energy is the energy possessed by the body when its position is changed in the gravitational field also sometimes for easier calculation the approximate value of acceleration due to gravity is taken as $g = 10m{s^{ - 2}}$.
Last updated date: 25th May 2023
•
Total views: 88.8k
•
Views today: 0.47k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Ray optics is valid when characteristic dimensions class 12 physics CBSE

Name the Largest and the Smallest Cell in the Human Body ?

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

How do you define least count for Vernier Calipers class 12 physics CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main
