
The circumference of the base of a 24 m high conical tent is 44 m. Calculate the length of a canvas used in making the tent if the width of the canvas is 2 m.
A. 257 m
B. 275 m
C. 752 m
D. 285 m
Answer
232.8k+ views
Hint: Here, we will use the formula of circumference \[2\pi r\] to find the radius of the circle. Then we will find the slant height \[l = \sqrt {{h^2} + {r^2}} \] to find the surface area of the canonical tent \[\pi rl\]. Then the surface area is divided by the width for the length of required canvas.
Complete step-by-step solution
Given that the height \[h\] is 24 m.
Let the radius of the base of a conical tent is \[r\] meters and the slant height be \[l\] meters.
We know that the circumference of a circle is \[2\pi r\], where \[r\] is the radius of the circle.
Since we are given that the circumference of the conical tent is 44 m.
\[ \Rightarrow 2\pi r = 44\]
Dividing the above equation by \[2\pi \] on each of the sides, we get
\[
\Rightarrow \dfrac{{2\pi r}}{{2\pi }} = \dfrac{{44}}{{2\pi }} \\
\Rightarrow r = \dfrac{{44}}{{2\pi }} \\
\]
Substituting the value of \[\pi \] in the above equation and simplify it, we get
\[
\Rightarrow r = \dfrac{{44}}{{2 \times \dfrac{{22}}{7}}} \\
\Rightarrow r = \dfrac{{44 \times 7}}{{2 \times 22}} \\
\Rightarrow r = 7{\text{ m}} \\
\]
We will now find the slant height \[l\] by substituting the values of \[h\] and \[r\] in the equation \[l = \sqrt {{h^2} + {r^2}} \].
\[
\Rightarrow l = \sqrt {{7^2} + {{24}^2}} \\
\Rightarrow l = \sqrt {49 + 576} \\
\Rightarrow l = \sqrt {625} \\
\Rightarrow l = 25{\text{ m}} \\
\]
Substituting the above values of \[r\] and \[l\] in the surface area \[\pi rl\], we get
\[
{\text{Surface area}} = \pi rl \\
= \dfrac{{22}}{7} \times 7 \times 25 \\
= 22 \times 25 \\
= 550{\text{ }}{{\text{m}}^2} \\
\]
We know that the area of canvas is equal to the surface area of the cone.
Thus, the area of the canvas is 550 m\[^2\].
Using the width of the canvas is 2 m, we will now find the length of the canvas by dividing the area of canvas by 2.
\[
{\text{Length of canvas}} = \dfrac{{{\text{Area of canvas}}}}{2} \\
= \dfrac{{550}}{2} \\
= 275{\text{ m}} \\
\]
Thus, the length of canvas used in making the tent is 275 m.
Hence, the option B is correct.
Note: In this question, students should be familiar with formulae of circumference of a circle, \[2\pi r\] and the surface area of cone, \[\pi rl\]. We will use the equality of area of canvas and the surface area of the cone for the correct solution. We have to divide the area of the canvas by the width of the canvas to find the length of the canvas.
Complete step-by-step solution
Given that the height \[h\] is 24 m.
Let the radius of the base of a conical tent is \[r\] meters and the slant height be \[l\] meters.
We know that the circumference of a circle is \[2\pi r\], where \[r\] is the radius of the circle.
Since we are given that the circumference of the conical tent is 44 m.
\[ \Rightarrow 2\pi r = 44\]
Dividing the above equation by \[2\pi \] on each of the sides, we get
\[
\Rightarrow \dfrac{{2\pi r}}{{2\pi }} = \dfrac{{44}}{{2\pi }} \\
\Rightarrow r = \dfrac{{44}}{{2\pi }} \\
\]
Substituting the value of \[\pi \] in the above equation and simplify it, we get
\[
\Rightarrow r = \dfrac{{44}}{{2 \times \dfrac{{22}}{7}}} \\
\Rightarrow r = \dfrac{{44 \times 7}}{{2 \times 22}} \\
\Rightarrow r = 7{\text{ m}} \\
\]
We will now find the slant height \[l\] by substituting the values of \[h\] and \[r\] in the equation \[l = \sqrt {{h^2} + {r^2}} \].
\[
\Rightarrow l = \sqrt {{7^2} + {{24}^2}} \\
\Rightarrow l = \sqrt {49 + 576} \\
\Rightarrow l = \sqrt {625} \\
\Rightarrow l = 25{\text{ m}} \\
\]
Substituting the above values of \[r\] and \[l\] in the surface area \[\pi rl\], we get
\[
{\text{Surface area}} = \pi rl \\
= \dfrac{{22}}{7} \times 7 \times 25 \\
= 22 \times 25 \\
= 550{\text{ }}{{\text{m}}^2} \\
\]
We know that the area of canvas is equal to the surface area of the cone.
Thus, the area of the canvas is 550 m\[^2\].
Using the width of the canvas is 2 m, we will now find the length of the canvas by dividing the area of canvas by 2.
\[
{\text{Length of canvas}} = \dfrac{{{\text{Area of canvas}}}}{2} \\
= \dfrac{{550}}{2} \\
= 275{\text{ m}} \\
\]
Thus, the length of canvas used in making the tent is 275 m.
Hence, the option B is correct.
Note: In this question, students should be familiar with formulae of circumference of a circle, \[2\pi r\] and the surface area of cone, \[\pi rl\]. We will use the equality of area of canvas and the surface area of the cone for the correct solution. We have to divide the area of the canvas by the width of the canvas to find the length of the canvas.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Response Sheet 2026 Released – Key Dates and Official Updates by NTA

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

