 Questions & Answers    Question Answers

# Solve the following equations:$4x - 3y = 1, \\ 12xy + 13{y^2} = 25. \\$  Answer Verified
Hint: - Substitute the value from ${1^{st}}$equation into${2^{nd}}$equation.

Given equations is
$4x - 3y = 1.............................\left( 1 \right) \\ 12xy + 13{y^2} = 25...........................\left( 2 \right) \\$
From equation 1
$y = \dfrac{{4x - 1}}{3}...................\left( 3 \right)$
Put this value of$y$in equation 2
$12x\left( {\dfrac{{4x - 1}}{3}} \right) + 13{\left( {\dfrac{{4x - 1}}{3}} \right)^2} = 25 \\ 4x\left( {4x - 1} \right) + \dfrac{{13}}{9}{\left( {4x - 1} \right)^2} = 25 \\$
Multiply by 9 in equation
$36x\left( {4x - 1} \right) + 13{\left( {4x - 1} \right)^2} = 225 \\ 144{x^2} - 36x + 13\left( {16{x^2} + 1 - 8x} \right) = 225 \\ 352{x^2} - 140x - 212 = 0 \\$
Divide by 4 in the equation
$88{x^2} - 35x - 53 = 0$
Divide the equation by 88.
${x^2} - \dfrac{{35}}{{88}}x - \dfrac{{53}}{{88}} = 0 \\ {x^2} - x + \dfrac{{53}}{{88}}x - \dfrac{{53}}{{88}} = 0 \\$
So, factorize this equation

$\left( {x - 1} \right)\left( {x + \dfrac{{53}}{{88}}} \right) = 0 \\ \Rightarrow x - 1 = 0 \Rightarrow x = 1 \\ \Rightarrow x + \dfrac{{53}}{{88}} \Rightarrow x = - \dfrac{{53}}{{88}} \\$
Now, from equation 3
$y = \dfrac{{4x - 1}}{3}$
When
$x = 1 \\ \Rightarrow y = \dfrac{{4 - 1}}{3} = \dfrac{3}{3} = 1 \\$
When
$x = - \dfrac{{53}}{{88}} \\ y = \dfrac{{4\left( { - \dfrac{{53}}{{88}}} \right) - 1}}{3} = \dfrac{{ - \dfrac{{53}}{{22}} - 1}}{3} = \dfrac{{ - 75}}{{22 \times 3}} = - \dfrac{{25}}{{22}} \\$
So, the required solution for the given equation is $\left( {1,1} \right),{\text{ }}\left( { - \dfrac{{53}}{{88}}, - \dfrac{{25}}{{22}}} \right)$

Note: - whenever we face such types of question always put the value of$x$or$y$ from simple equation into complex equation, then simplify the equation and find out the value of $x$or$y$, then put these values in the first equation we will get the required solution of the equations.
Bookmark added to your notes.
View Notes
Quadratic Equations  Solve Separable Differential Equations  Complex Numbers and Quadratic Equations  CBSE Class 11 Maths Chapter 5 - Complex Numbers and Quadratic Equations Formulas  CBSE Class 10 Maths Chapter 4 - Quadratic Equations Formula  Maths Equations  Polynomial Equations  Simple Equations Application  Solving Linear Equations  Simultaneous Equations  