
Solve the following equations:
$
4x - 3y = 1, \\
12xy + 13{y^2} = 25. \\
$
Answer
232.8k+ views
Hint: - Substitute the value from ${1^{st}}$equation into${2^{nd}}$equation.
Given equations is
$
4x - 3y = 1.............................\left( 1 \right) \\
12xy + 13{y^2} = 25...........................\left( 2 \right) \\
$
From equation 1
$y = \dfrac{{4x - 1}}{3}...................\left( 3 \right)$
Put this value of$y$in equation 2
$
12x\left( {\dfrac{{4x - 1}}{3}} \right) + 13{\left( {\dfrac{{4x - 1}}{3}} \right)^2} = 25 \\
4x\left( {4x - 1} \right) + \dfrac{{13}}{9}{\left( {4x - 1} \right)^2} = 25 \\
$
Multiply by 9 in equation
$
36x\left( {4x - 1} \right) + 13{\left( {4x - 1} \right)^2} = 225 \\
144{x^2} - 36x + 13\left( {16{x^2} + 1 - 8x} \right) = 225 \\
352{x^2} - 140x - 212 = 0 \\
$
Divide by 4 in the equation
$88{x^2} - 35x - 53 = 0$
Divide the equation by 88.
$
{x^2} - \dfrac{{35}}{{88}}x - \dfrac{{53}}{{88}} = 0 \\
{x^2} - x + \dfrac{{53}}{{88}}x - \dfrac{{53}}{{88}} = 0 \\
$
So, factorize this equation
$
\left( {x - 1} \right)\left( {x + \dfrac{{53}}{{88}}} \right) = 0 \\
\Rightarrow x - 1 = 0 \Rightarrow x = 1 \\
\Rightarrow x + \dfrac{{53}}{{88}} \Rightarrow x = - \dfrac{{53}}{{88}} \\
$
Now, from equation 3
$y = \dfrac{{4x - 1}}{3}$
When
$
x = 1 \\
\Rightarrow y = \dfrac{{4 - 1}}{3} = \dfrac{3}{3} = 1 \\
$
When
$
x = - \dfrac{{53}}{{88}} \\
y = \dfrac{{4\left( { - \dfrac{{53}}{{88}}} \right) - 1}}{3} = \dfrac{{ - \dfrac{{53}}{{22}} - 1}}{3} = \dfrac{{ - 75}}{{22 \times 3}} = - \dfrac{{25}}{{22}} \\
$
So, the required solution for the given equation is $\left( {1,1} \right),{\text{ }}\left( { - \dfrac{{53}}{{88}}, - \dfrac{{25}}{{22}}} \right)$
Note: - whenever we face such types of question always put the value of$x$or$y$ from simple equation into complex equation, then simplify the equation and find out the value of $x$or$y$, then put these values in the first equation we will get the required solution of the equations.
Given equations is
$
4x - 3y = 1.............................\left( 1 \right) \\
12xy + 13{y^2} = 25...........................\left( 2 \right) \\
$
From equation 1
$y = \dfrac{{4x - 1}}{3}...................\left( 3 \right)$
Put this value of$y$in equation 2
$
12x\left( {\dfrac{{4x - 1}}{3}} \right) + 13{\left( {\dfrac{{4x - 1}}{3}} \right)^2} = 25 \\
4x\left( {4x - 1} \right) + \dfrac{{13}}{9}{\left( {4x - 1} \right)^2} = 25 \\
$
Multiply by 9 in equation
$
36x\left( {4x - 1} \right) + 13{\left( {4x - 1} \right)^2} = 225 \\
144{x^2} - 36x + 13\left( {16{x^2} + 1 - 8x} \right) = 225 \\
352{x^2} - 140x - 212 = 0 \\
$
Divide by 4 in the equation
$88{x^2} - 35x - 53 = 0$
Divide the equation by 88.
$
{x^2} - \dfrac{{35}}{{88}}x - \dfrac{{53}}{{88}} = 0 \\
{x^2} - x + \dfrac{{53}}{{88}}x - \dfrac{{53}}{{88}} = 0 \\
$
So, factorize this equation
$
\left( {x - 1} \right)\left( {x + \dfrac{{53}}{{88}}} \right) = 0 \\
\Rightarrow x - 1 = 0 \Rightarrow x = 1 \\
\Rightarrow x + \dfrac{{53}}{{88}} \Rightarrow x = - \dfrac{{53}}{{88}} \\
$
Now, from equation 3
$y = \dfrac{{4x - 1}}{3}$
When
$
x = 1 \\
\Rightarrow y = \dfrac{{4 - 1}}{3} = \dfrac{3}{3} = 1 \\
$
When
$
x = - \dfrac{{53}}{{88}} \\
y = \dfrac{{4\left( { - \dfrac{{53}}{{88}}} \right) - 1}}{3} = \dfrac{{ - \dfrac{{53}}{{22}} - 1}}{3} = \dfrac{{ - 75}}{{22 \times 3}} = - \dfrac{{25}}{{22}} \\
$
So, the required solution for the given equation is $\left( {1,1} \right),{\text{ }}\left( { - \dfrac{{53}}{{88}}, - \dfrac{{25}}{{22}}} \right)$
Note: - whenever we face such types of question always put the value of$x$or$y$ from simple equation into complex equation, then simplify the equation and find out the value of $x$or$y$, then put these values in the first equation we will get the required solution of the equations.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

