
Solve the following equations:
$
4x - 3y = 1, \\
12xy + 13{y^2} = 25. \\
$
Answer
232.8k+ views
Hint: - Substitute the value from ${1^{st}}$equation into${2^{nd}}$equation.
Given equations is
$
4x - 3y = 1.............................\left( 1 \right) \\
12xy + 13{y^2} = 25...........................\left( 2 \right) \\
$
From equation 1
$y = \dfrac{{4x - 1}}{3}...................\left( 3 \right)$
Put this value of$y$in equation 2
$
12x\left( {\dfrac{{4x - 1}}{3}} \right) + 13{\left( {\dfrac{{4x - 1}}{3}} \right)^2} = 25 \\
4x\left( {4x - 1} \right) + \dfrac{{13}}{9}{\left( {4x - 1} \right)^2} = 25 \\
$
Multiply by 9 in equation
$
36x\left( {4x - 1} \right) + 13{\left( {4x - 1} \right)^2} = 225 \\
144{x^2} - 36x + 13\left( {16{x^2} + 1 - 8x} \right) = 225 \\
352{x^2} - 140x - 212 = 0 \\
$
Divide by 4 in the equation
$88{x^2} - 35x - 53 = 0$
Divide the equation by 88.
$
{x^2} - \dfrac{{35}}{{88}}x - \dfrac{{53}}{{88}} = 0 \\
{x^2} - x + \dfrac{{53}}{{88}}x - \dfrac{{53}}{{88}} = 0 \\
$
So, factorize this equation
$
\left( {x - 1} \right)\left( {x + \dfrac{{53}}{{88}}} \right) = 0 \\
\Rightarrow x - 1 = 0 \Rightarrow x = 1 \\
\Rightarrow x + \dfrac{{53}}{{88}} \Rightarrow x = - \dfrac{{53}}{{88}} \\
$
Now, from equation 3
$y = \dfrac{{4x - 1}}{3}$
When
$
x = 1 \\
\Rightarrow y = \dfrac{{4 - 1}}{3} = \dfrac{3}{3} = 1 \\
$
When
$
x = - \dfrac{{53}}{{88}} \\
y = \dfrac{{4\left( { - \dfrac{{53}}{{88}}} \right) - 1}}{3} = \dfrac{{ - \dfrac{{53}}{{22}} - 1}}{3} = \dfrac{{ - 75}}{{22 \times 3}} = - \dfrac{{25}}{{22}} \\
$
So, the required solution for the given equation is $\left( {1,1} \right),{\text{ }}\left( { - \dfrac{{53}}{{88}}, - \dfrac{{25}}{{22}}} \right)$
Note: - whenever we face such types of question always put the value of$x$or$y$ from simple equation into complex equation, then simplify the equation and find out the value of $x$or$y$, then put these values in the first equation we will get the required solution of the equations.
Given equations is
$
4x - 3y = 1.............................\left( 1 \right) \\
12xy + 13{y^2} = 25...........................\left( 2 \right) \\
$
From equation 1
$y = \dfrac{{4x - 1}}{3}...................\left( 3 \right)$
Put this value of$y$in equation 2
$
12x\left( {\dfrac{{4x - 1}}{3}} \right) + 13{\left( {\dfrac{{4x - 1}}{3}} \right)^2} = 25 \\
4x\left( {4x - 1} \right) + \dfrac{{13}}{9}{\left( {4x - 1} \right)^2} = 25 \\
$
Multiply by 9 in equation
$
36x\left( {4x - 1} \right) + 13{\left( {4x - 1} \right)^2} = 225 \\
144{x^2} - 36x + 13\left( {16{x^2} + 1 - 8x} \right) = 225 \\
352{x^2} - 140x - 212 = 0 \\
$
Divide by 4 in the equation
$88{x^2} - 35x - 53 = 0$
Divide the equation by 88.
$
{x^2} - \dfrac{{35}}{{88}}x - \dfrac{{53}}{{88}} = 0 \\
{x^2} - x + \dfrac{{53}}{{88}}x - \dfrac{{53}}{{88}} = 0 \\
$
So, factorize this equation
$
\left( {x - 1} \right)\left( {x + \dfrac{{53}}{{88}}} \right) = 0 \\
\Rightarrow x - 1 = 0 \Rightarrow x = 1 \\
\Rightarrow x + \dfrac{{53}}{{88}} \Rightarrow x = - \dfrac{{53}}{{88}} \\
$
Now, from equation 3
$y = \dfrac{{4x - 1}}{3}$
When
$
x = 1 \\
\Rightarrow y = \dfrac{{4 - 1}}{3} = \dfrac{3}{3} = 1 \\
$
When
$
x = - \dfrac{{53}}{{88}} \\
y = \dfrac{{4\left( { - \dfrac{{53}}{{88}}} \right) - 1}}{3} = \dfrac{{ - \dfrac{{53}}{{22}} - 1}}{3} = \dfrac{{ - 75}}{{22 \times 3}} = - \dfrac{{25}}{{22}} \\
$
So, the required solution for the given equation is $\left( {1,1} \right),{\text{ }}\left( { - \dfrac{{53}}{{88}}, - \dfrac{{25}}{{22}}} \right)$
Note: - whenever we face such types of question always put the value of$x$or$y$ from simple equation into complex equation, then simplify the equation and find out the value of $x$or$y$, then put these values in the first equation we will get the required solution of the equations.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

