
One-fourth length of a spring of force constant K is cut away. The force constant of the remaining spring will be
A. \[\dfrac{3}{4}K \\ \]
B. \[\dfrac{4}{3}K \\ \]
C. 4K
D. K
Answer
232.8k+ views
Hint: Spring constant gives the stiffness of a spring and is equal to the force needed to stretch the spring divided by the distance that the spring is compressed or stretched.
Formula used:
The relation of spring constant K with length can be given by,
\[K \propto \dfrac{1}{l}\]
Complete step by step solution:
A spring of constant K is cut away by \[\dfrac{1}{4}\] of its length, we have to find the spring constant of the remaining part of the spring. We know that spring constant is inversely proportional to length of the spring and let the original length of spring be l then the relation of spring constant K with length can be given by,
\[K \propto \dfrac{1}{l}\,.......(1)\]
As the \[\dfrac{1}{4}\]of length l of spring is cut away then the remaining length l’ of spring will be,
\[l' = \dfrac{3}{4}l\]
Let the spring constant of remaining length be K’ then according to equation (1) it will be,
\[K' \propto \dfrac{4}{{3l}}\,.......(2)\]
On dividing equation (2) by equation (1) we get,
\[\dfrac{{K'}}{K} = \dfrac{4}{{3l}} \times l \\
\Rightarrow K' = \,\dfrac{4}{3}K\].
Hence, the constant of remaining length will be \[\dfrac{4}{3}K\].
Therefore, option B is the correct answer.
Note: Springs having larger spring constant will have smaller displacement and one having smaller spring constant will have larger displacement, it always has positive magnitude because negative spring constant will mean that when a compressive force is applied to spring it will compress itself further, which is against the nature of a spring.
Formula used:
The relation of spring constant K with length can be given by,
\[K \propto \dfrac{1}{l}\]
Complete step by step solution:
A spring of constant K is cut away by \[\dfrac{1}{4}\] of its length, we have to find the spring constant of the remaining part of the spring. We know that spring constant is inversely proportional to length of the spring and let the original length of spring be l then the relation of spring constant K with length can be given by,
\[K \propto \dfrac{1}{l}\,.......(1)\]
As the \[\dfrac{1}{4}\]of length l of spring is cut away then the remaining length l’ of spring will be,
\[l' = \dfrac{3}{4}l\]
Let the spring constant of remaining length be K’ then according to equation (1) it will be,
\[K' \propto \dfrac{4}{{3l}}\,.......(2)\]
On dividing equation (2) by equation (1) we get,
\[\dfrac{{K'}}{K} = \dfrac{4}{{3l}} \times l \\
\Rightarrow K' = \,\dfrac{4}{3}K\].
Hence, the constant of remaining length will be \[\dfrac{4}{3}K\].
Therefore, option B is the correct answer.
Note: Springs having larger spring constant will have smaller displacement and one having smaller spring constant will have larger displacement, it always has positive magnitude because negative spring constant will mean that when a compressive force is applied to spring it will compress itself further, which is against the nature of a spring.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Uniform Acceleration in Physics

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

