
If r satisfies the equation $r \times \left( {i + 2j + k} \right) = i - k$, then for any scalar $\alpha $, r is equal to
\[
A.{\text{ }}i + \alpha \left( {i + 2j + k} \right) \\
B.{\text{ j}} + \alpha \left( {i + 2j + k} \right) \\
C.{\text{ k}} + \alpha \left( {i + 2j + k} \right) \\
D.{\text{ }}i - k + \alpha \left( {i + 2j + k} \right) \\
\]
Answer
218.7k+ views
Hint: In this question assume $r = \alpha i + \beta j + \lambda k$ and then apply a cross product to reach the solution of the problem.
Complete step-by-step answer:
Let $r = \alpha i + \beta j + \lambda k$…………….. (1)
Now given equation is
$r \times \left( {i + 2j + k} \right) = i - k$
So, first find out the value of
$r \times \left( {i + 2j + k} \right)$
$ \Rightarrow r \times \left( {i + 2j + k} \right) = \left( {\alpha i + \beta j + \lambda k} \right) \times \left( {i + 2j + k} \right)$
Now, apply cross product property we have,
$ \Rightarrow r \times \left( {i + 2j + k} \right) = \left| {\begin{array}{*{20}{c}}
i&j&k \\
\alpha &\beta &\lambda \\
1&2&1
\end{array}} \right| = i\left( {\beta - 2\lambda } \right) - j\left( {\alpha - \lambda } \right) + k\left( {2\alpha - \beta } \right)$
Now the above value is equal to
$i\left( {\beta - 2\lambda } \right) - j\left( {\alpha - \lambda } \right) + k\left( {2\alpha - \beta } \right) = i - k$
So on comparing the terms $i,{\text{ j, k}}$ we have
$\left( {\beta - 2\lambda } \right)$ = 1, $\left( {\alpha - \lambda } \right)$ = 0, $\left( {2\alpha - \beta } \right)$ = -1
$ \Rightarrow \beta = 1 + 2\lambda ,{\text{ }}\alpha = \lambda ,{\text{ }}\beta = 1 + 2\alpha $
So, from equation (1) we have,
$r = \alpha i + \beta j + \lambda k$, substitute the value of $\beta $ and $\lambda $ in this equation we have,
$ \Rightarrow r = \alpha i + \left( {1 + 2\alpha } \right)j + \alpha k$
$ \Rightarrow r = j + \alpha \left( {i + 2j + k} \right)$, for any scalar $\alpha $.
Hence, option (b) is correct.
Note: In such types of questions first assume r as above then apply cross product as above, then compare the value of cross product with the given value and find out the values of $\alpha ,{\text{ }}\beta {\text{, }}\lambda $, then substitute the value of $\beta $ and $\lambda $in terms of $\alpha $ in r we will get the required r for any scaler $\alpha $.
Complete step-by-step answer:
Let $r = \alpha i + \beta j + \lambda k$…………….. (1)
Now given equation is
$r \times \left( {i + 2j + k} \right) = i - k$
So, first find out the value of
$r \times \left( {i + 2j + k} \right)$
$ \Rightarrow r \times \left( {i + 2j + k} \right) = \left( {\alpha i + \beta j + \lambda k} \right) \times \left( {i + 2j + k} \right)$
Now, apply cross product property we have,
$ \Rightarrow r \times \left( {i + 2j + k} \right) = \left| {\begin{array}{*{20}{c}}
i&j&k \\
\alpha &\beta &\lambda \\
1&2&1
\end{array}} \right| = i\left( {\beta - 2\lambda } \right) - j\left( {\alpha - \lambda } \right) + k\left( {2\alpha - \beta } \right)$
Now the above value is equal to
$i\left( {\beta - 2\lambda } \right) - j\left( {\alpha - \lambda } \right) + k\left( {2\alpha - \beta } \right) = i - k$
So on comparing the terms $i,{\text{ j, k}}$ we have
$\left( {\beta - 2\lambda } \right)$ = 1, $\left( {\alpha - \lambda } \right)$ = 0, $\left( {2\alpha - \beta } \right)$ = -1
$ \Rightarrow \beta = 1 + 2\lambda ,{\text{ }}\alpha = \lambda ,{\text{ }}\beta = 1 + 2\alpha $
So, from equation (1) we have,
$r = \alpha i + \beta j + \lambda k$, substitute the value of $\beta $ and $\lambda $ in this equation we have,
$ \Rightarrow r = \alpha i + \left( {1 + 2\alpha } \right)j + \alpha k$
$ \Rightarrow r = j + \alpha \left( {i + 2j + k} \right)$, for any scalar $\alpha $.
Hence, option (b) is correct.
Note: In such types of questions first assume r as above then apply cross product as above, then compare the value of cross product with the given value and find out the values of $\alpha ,{\text{ }}\beta {\text{, }}\lambda $, then substitute the value of $\beta $ and $\lambda $in terms of $\alpha $ in r we will get the required r for any scaler $\alpha $.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

