If four points $A(6,3),B( - 3,5),C(4, - 2)$ and $D(x,3x)$ are given in such a way , then find the value of x.
A.$\dfrac{3}{8}$ or$ - \dfrac{{14}}{8}$
B.2 or -3
C. $\dfrac{{11}}{8}$ or$ - \dfrac{3}{8}$
D. None of these
Answer
90.6k+ views
Hint: First write the formula of the area of a triangle, then substitute the given coordinates in the formula to obtain the area of the triangle DBC and triangle ABC. Then Substitute the obtained areas in the given equation to obtain the value of x.
Formula Used:
Area=$\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$ , where $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ are the vertices of the triangle.
Complete step by step solution:
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(6,3),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\dfrac{1}{2}\left[ {6\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3) + 4(3 - 5)} \right]$
$ = \dfrac{1}{2}\left[ {42 + 15 - 8} \right]$
$ = \dfrac{{49}}{2}$
So, the area of the triangle ABC is $\dfrac{{49}}{2}.$
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(x,3x),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\left| {\dfrac{1}{2}\left[ {x\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3x) + 4(3x - 5)} \right]} \right|$ , taking modulus as an area is always positive.
$ = \left| {\dfrac{1}{2}\left[ {7x + 6 + 9x + 12x - 20} \right]} \right|$
$ = \left| {\dfrac{1}{2}\left[ {28x - 14} \right]} \right|$
$ = \left| {14x - 7} \right|$
So, the area of the triangle DBC is $\left| {14x - 7} \right|$.
Substitute $\dfrac{{49}}{2}$for area of the triangle ABC and $\left| {14x - 7} \right|$ for the area of the triangle DBC in the equation to obtain the value of x.
Hence,
$\dfrac{{\left| {14x - 7} \right|}}{{\dfrac{{49}}{2}}} = \dfrac{1}{2}$
$\dfrac{{2(\left| {14x - 7} \right|)}}{{49}} = \dfrac{1}{2}$
$4(\left| {14x - 7} \right|) = 49$
$14x - 7 = \pm \dfrac{{49}}{4}$
Now, take the positive sign,
$14x - 7 = \dfrac{{49}}{4}$
$14x = \dfrac{{49}}{4} + 7$
$x = \dfrac{{77}}{{56}}$
That is, $x = \dfrac{{11}}{8}$ .
Take the negative sign,
$14x - 7 = - \dfrac{{49}}{4}$
$14x = - \dfrac{{49}}{4} + 7$
$x = \dfrac{{ - 21}}{{56}}$
That is, $x = \dfrac{{ - 3}}{8}$
Option ‘C’ is correct
Note: Students often skip the calculation step of showing the areas of the triangle and directly mention the areas doing the calculation in the roughwork, but that is not correct, we need to show the full calculation in the main answer sheet to avoid any type of mistake. They also sometimes forget to take the modulus and deal with only the positive value but as x is unknown so we need to take the modulus sign to calculate the positive as well as the negative value.
Formula Used:
Area=$\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$ , where $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ are the vertices of the triangle.
Complete step by step solution:
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(6,3),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\dfrac{1}{2}\left[ {6\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3) + 4(3 - 5)} \right]$
$ = \dfrac{1}{2}\left[ {42 + 15 - 8} \right]$
$ = \dfrac{{49}}{2}$
So, the area of the triangle ABC is $\dfrac{{49}}{2}.$
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(x,3x),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\left| {\dfrac{1}{2}\left[ {x\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3x) + 4(3x - 5)} \right]} \right|$ , taking modulus as an area is always positive.
$ = \left| {\dfrac{1}{2}\left[ {7x + 6 + 9x + 12x - 20} \right]} \right|$
$ = \left| {\dfrac{1}{2}\left[ {28x - 14} \right]} \right|$
$ = \left| {14x - 7} \right|$
So, the area of the triangle DBC is $\left| {14x - 7} \right|$.
Substitute $\dfrac{{49}}{2}$for area of the triangle ABC and $\left| {14x - 7} \right|$ for the area of the triangle DBC in the equation to obtain the value of x.
Hence,
$\dfrac{{\left| {14x - 7} \right|}}{{\dfrac{{49}}{2}}} = \dfrac{1}{2}$
$\dfrac{{2(\left| {14x - 7} \right|)}}{{49}} = \dfrac{1}{2}$
$4(\left| {14x - 7} \right|) = 49$
$14x - 7 = \pm \dfrac{{49}}{4}$
Now, take the positive sign,
$14x - 7 = \dfrac{{49}}{4}$
$14x = \dfrac{{49}}{4} + 7$
$x = \dfrac{{77}}{{56}}$
That is, $x = \dfrac{{11}}{8}$ .
Take the negative sign,
$14x - 7 = - \dfrac{{49}}{4}$
$14x = - \dfrac{{49}}{4} + 7$
$x = \dfrac{{ - 21}}{{56}}$
That is, $x = \dfrac{{ - 3}}{8}$
Option ‘C’ is correct
Note: Students often skip the calculation step of showing the areas of the triangle and directly mention the areas doing the calculation in the roughwork, but that is not correct, we need to show the full calculation in the main answer sheet to avoid any type of mistake. They also sometimes forget to take the modulus and deal with only the positive value but as x is unknown so we need to take the modulus sign to calculate the positive as well as the negative value.
Last updated date: 03rd Jun 2023
•
Total views: 90.6k
•
Views today: 0.47k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Tropic of Cancer passes through how many states? Name them.

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE

What is per capita income

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
