
If four points $A(6,3),B( - 3,5),C(4, - 2)$ and $D(x,3x)$ are given in such a way , then find the value of x.
A.$\dfrac{3}{8}$ or$ - \dfrac{{14}}{8}$
B.2 or -3
C. $\dfrac{{11}}{8}$ or$ - \dfrac{3}{8}$
D. None of these
Answer
217.5k+ views
Hint: First write the formula of the area of a triangle, then substitute the given coordinates in the formula to obtain the area of the triangle DBC and triangle ABC. Then Substitute the obtained areas in the given equation to obtain the value of x.
Formula Used:
Area=$\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$ , where $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ are the vertices of the triangle.
Complete step by step solution:
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(6,3),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\dfrac{1}{2}\left[ {6\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3) + 4(3 - 5)} \right]$
$ = \dfrac{1}{2}\left[ {42 + 15 - 8} \right]$
$ = \dfrac{{49}}{2}$
So, the area of the triangle ABC is $\dfrac{{49}}{2}.$
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(x,3x),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\left| {\dfrac{1}{2}\left[ {x\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3x) + 4(3x - 5)} \right]} \right|$ , taking modulus as an area is always positive.
$ = \left| {\dfrac{1}{2}\left[ {7x + 6 + 9x + 12x - 20} \right]} \right|$
$ = \left| {\dfrac{1}{2}\left[ {28x - 14} \right]} \right|$
$ = \left| {14x - 7} \right|$
So, the area of the triangle DBC is $\left| {14x - 7} \right|$.
Substitute $\dfrac{{49}}{2}$for area of the triangle ABC and $\left| {14x - 7} \right|$ for the area of the triangle DBC in the equation to obtain the value of x.
Hence,
$\dfrac{{\left| {14x - 7} \right|}}{{\dfrac{{49}}{2}}} = \dfrac{1}{2}$
$\dfrac{{2(\left| {14x - 7} \right|)}}{{49}} = \dfrac{1}{2}$
$4(\left| {14x - 7} \right|) = 49$
$14x - 7 = \pm \dfrac{{49}}{4}$
Now, take the positive sign,
$14x - 7 = \dfrac{{49}}{4}$
$14x = \dfrac{{49}}{4} + 7$
$x = \dfrac{{77}}{{56}}$
That is, $x = \dfrac{{11}}{8}$ .
Take the negative sign,
$14x - 7 = - \dfrac{{49}}{4}$
$14x = - \dfrac{{49}}{4} + 7$
$x = \dfrac{{ - 21}}{{56}}$
That is, $x = \dfrac{{ - 3}}{8}$
Option ‘C’ is correct
Note: Students often skip the calculation step of showing the areas of the triangle and directly mention the areas doing the calculation in the roughwork, but that is not correct, we need to show the full calculation in the main answer sheet to avoid any type of mistake. They also sometimes forget to take the modulus and deal with only the positive value but as x is unknown so we need to take the modulus sign to calculate the positive as well as the negative value.
Formula Used:
Area=$\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$ , where $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ are the vertices of the triangle.
Complete step by step solution:
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(6,3),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\dfrac{1}{2}\left[ {6\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3) + 4(3 - 5)} \right]$
$ = \dfrac{1}{2}\left[ {42 + 15 - 8} \right]$
$ = \dfrac{{49}}{2}$
So, the area of the triangle ABC is $\dfrac{{49}}{2}.$
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(x,3x),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\left| {\dfrac{1}{2}\left[ {x\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3x) + 4(3x - 5)} \right]} \right|$ , taking modulus as an area is always positive.
$ = \left| {\dfrac{1}{2}\left[ {7x + 6 + 9x + 12x - 20} \right]} \right|$
$ = \left| {\dfrac{1}{2}\left[ {28x - 14} \right]} \right|$
$ = \left| {14x - 7} \right|$
So, the area of the triangle DBC is $\left| {14x - 7} \right|$.
Substitute $\dfrac{{49}}{2}$for area of the triangle ABC and $\left| {14x - 7} \right|$ for the area of the triangle DBC in the equation to obtain the value of x.
Hence,
$\dfrac{{\left| {14x - 7} \right|}}{{\dfrac{{49}}{2}}} = \dfrac{1}{2}$
$\dfrac{{2(\left| {14x - 7} \right|)}}{{49}} = \dfrac{1}{2}$
$4(\left| {14x - 7} \right|) = 49$
$14x - 7 = \pm \dfrac{{49}}{4}$
Now, take the positive sign,
$14x - 7 = \dfrac{{49}}{4}$
$14x = \dfrac{{49}}{4} + 7$
$x = \dfrac{{77}}{{56}}$
That is, $x = \dfrac{{11}}{8}$ .
Take the negative sign,
$14x - 7 = - \dfrac{{49}}{4}$
$14x = - \dfrac{{49}}{4} + 7$
$x = \dfrac{{ - 21}}{{56}}$
That is, $x = \dfrac{{ - 3}}{8}$
Option ‘C’ is correct
Note: Students often skip the calculation step of showing the areas of the triangle and directly mention the areas doing the calculation in the roughwork, but that is not correct, we need to show the full calculation in the main answer sheet to avoid any type of mistake. They also sometimes forget to take the modulus and deal with only the positive value but as x is unknown so we need to take the modulus sign to calculate the positive as well as the negative value.
Recently Updated Pages
Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Convex and Concave Lenses Explained: Uses, Differences & Diagrams

Coulomb's Law: Definition, Formula, and Examples

De Broglie Equation Explained: Formula, Derivation & Uses

Differentiation in Kinematics: Concepts & Examples Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main 2026 Chapter-Wise Syllabus for Physics, Chemistry and Maths – Download PDF

JEE Main Previous Year Question Paper with Answer Keys and Solutions

Understanding Newton’s Laws of Motion

JEE Main Cut Off 2026 - Expected Qualifying Marks and Percentile Category Wise

Marks vs Percentile JEE Mains 2026: Calculate Percentile Marks

Other Pages
NCERT Solutions For Class 10 Maths Chapter 12 Surface Area And Volume

NCERT Solutions for Class 10 Maths Chapter Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related to Circles 2025-26

Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions for Class 10 Maths Chapter 15 Probability

Complete List of Class 10 Maths Formulas (Chapterwise)

