
If four points $A(6,3),B( - 3,5),C(4, - 2)$ and $D(x,3x)$ are given in such a way , then find the value of x.
A.$\dfrac{3}{8}$ or$ - \dfrac{{14}}{8}$
B.2 or -3
C. $\dfrac{{11}}{8}$ or$ - \dfrac{3}{8}$
D. None of these
Answer
233.1k+ views
Hint: First write the formula of the area of a triangle, then substitute the given coordinates in the formula to obtain the area of the triangle DBC and triangle ABC. Then Substitute the obtained areas in the given equation to obtain the value of x.
Formula Used:
Area=$\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$ , where $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ are the vertices of the triangle.
Complete step by step solution:
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(6,3),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\dfrac{1}{2}\left[ {6\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3) + 4(3 - 5)} \right]$
$ = \dfrac{1}{2}\left[ {42 + 15 - 8} \right]$
$ = \dfrac{{49}}{2}$
So, the area of the triangle ABC is $\dfrac{{49}}{2}.$
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(x,3x),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\left| {\dfrac{1}{2}\left[ {x\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3x) + 4(3x - 5)} \right]} \right|$ , taking modulus as an area is always positive.
$ = \left| {\dfrac{1}{2}\left[ {7x + 6 + 9x + 12x - 20} \right]} \right|$
$ = \left| {\dfrac{1}{2}\left[ {28x - 14} \right]} \right|$
$ = \left| {14x - 7} \right|$
So, the area of the triangle DBC is $\left| {14x - 7} \right|$.
Substitute $\dfrac{{49}}{2}$for area of the triangle ABC and $\left| {14x - 7} \right|$ for the area of the triangle DBC in the equation to obtain the value of x.
Hence,
$\dfrac{{\left| {14x - 7} \right|}}{{\dfrac{{49}}{2}}} = \dfrac{1}{2}$
$\dfrac{{2(\left| {14x - 7} \right|)}}{{49}} = \dfrac{1}{2}$
$4(\left| {14x - 7} \right|) = 49$
$14x - 7 = \pm \dfrac{{49}}{4}$
Now, take the positive sign,
$14x - 7 = \dfrac{{49}}{4}$
$14x = \dfrac{{49}}{4} + 7$
$x = \dfrac{{77}}{{56}}$
That is, $x = \dfrac{{11}}{8}$ .
Take the negative sign,
$14x - 7 = - \dfrac{{49}}{4}$
$14x = - \dfrac{{49}}{4} + 7$
$x = \dfrac{{ - 21}}{{56}}$
That is, $x = \dfrac{{ - 3}}{8}$
Option ‘C’ is correct
Note: Students often skip the calculation step of showing the areas of the triangle and directly mention the areas doing the calculation in the roughwork, but that is not correct, we need to show the full calculation in the main answer sheet to avoid any type of mistake. They also sometimes forget to take the modulus and deal with only the positive value but as x is unknown so we need to take the modulus sign to calculate the positive as well as the negative value.
Formula Used:
Area=$\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$ , where $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ are the vertices of the triangle.
Complete step by step solution:
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(6,3),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\dfrac{1}{2}\left[ {6\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3) + 4(3 - 5)} \right]$
$ = \dfrac{1}{2}\left[ {42 + 15 - 8} \right]$
$ = \dfrac{{49}}{2}$
So, the area of the triangle ABC is $\dfrac{{49}}{2}.$
Substitute $({x_1},{y_1}),({x_2},{y_2}),({x_3},{y_3})$ by $(x,3x),( - 3,5),(4, - 2)$ in the formula $\dfrac{1}{2}\left[ {{x_1}{\rm{\;}}\left( {{y_{2 - }}{\rm{\;}}{y_3}{\rm{\;}}} \right) + {x_2}{\rm{\;}}\left( {{y_3} - {y_1}{\rm{\;}}} \right) + {x_3}\left( {{y_1} - {y_2}} \right)} \right]$and calculate to obtain the required area.
$\left| {\dfrac{1}{2}\left[ {x\left( {5 - ( - 2)} \right) + ( - 3)( - 2 - 3x) + 4(3x - 5)} \right]} \right|$ , taking modulus as an area is always positive.
$ = \left| {\dfrac{1}{2}\left[ {7x + 6 + 9x + 12x - 20} \right]} \right|$
$ = \left| {\dfrac{1}{2}\left[ {28x - 14} \right]} \right|$
$ = \left| {14x - 7} \right|$
So, the area of the triangle DBC is $\left| {14x - 7} \right|$.
Substitute $\dfrac{{49}}{2}$for area of the triangle ABC and $\left| {14x - 7} \right|$ for the area of the triangle DBC in the equation to obtain the value of x.
Hence,
$\dfrac{{\left| {14x - 7} \right|}}{{\dfrac{{49}}{2}}} = \dfrac{1}{2}$
$\dfrac{{2(\left| {14x - 7} \right|)}}{{49}} = \dfrac{1}{2}$
$4(\left| {14x - 7} \right|) = 49$
$14x - 7 = \pm \dfrac{{49}}{4}$
Now, take the positive sign,
$14x - 7 = \dfrac{{49}}{4}$
$14x = \dfrac{{49}}{4} + 7$
$x = \dfrac{{77}}{{56}}$
That is, $x = \dfrac{{11}}{8}$ .
Take the negative sign,
$14x - 7 = - \dfrac{{49}}{4}$
$14x = - \dfrac{{49}}{4} + 7$
$x = \dfrac{{ - 21}}{{56}}$
That is, $x = \dfrac{{ - 3}}{8}$
Option ‘C’ is correct
Note: Students often skip the calculation step of showing the areas of the triangle and directly mention the areas doing the calculation in the roughwork, but that is not correct, we need to show the full calculation in the main answer sheet to avoid any type of mistake. They also sometimes forget to take the modulus and deal with only the positive value but as x is unknown so we need to take the modulus sign to calculate the positive as well as the negative value.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main Response Sheet 2026 Released – Key Dates and Official Updates by NTA

JEE Main 2026 Shift-Wise Marks vs Percentile vs Rank – Session 1 Detailed Analysis

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

