
If \[{a^x} = bc\], \[{b^y} = ac\], and \[{c^z} = ab\]. Then calculate the value of \[xyz\].
A. 0
B. 1
C. \[x + y + z + 2\]
D. \[x + y + z\]
Answer
233.1k+ views
Hint: First we will raise to power \[y\] both sides of \[{a^x} = bc\] and simplify it. Then substitute \[{b^y} = ac\]. Again, we will raise to power \[z\]. Then put the value \[{c^z}\]. Then we will use the indices \[{a^m} \cdot {a^n} = {a^{m + n}}\] to simplify it and plug \[bc = {a^x}\]. At least we compare the power of \[a\]of the equation to get the value of \[xyz\].
Formula Used:
\[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[{\left( {ab} \right)^m} = {a^m}{b^m}\]
Complete step by step solution:
Given that,
\[{a^x} = bc\], \[{b^y} = ac\], and \[{c^z} = ab\]
Now raise to power \[y\] on both sides of \[{a^x} = bc\]
\[{\left( {{a^x}} \right)^y} = {\left( {bc} \right)^y}\]
Applying the formulas \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {a^{xy}} = {b^y}{c^y}\]
Putting \[{b^y} = ac\]
\[ \Rightarrow {a^{xy}} = ac \cdot {c^y}\]
Now raise to power \[z\] on both sides of the equation
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {\left( {ac \cdot {c^y}} \right)^z}\]
Applying the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {a^z}{c^z}{c^{yz}}\]
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {a^z}{c^z}{\left( {{c^z}} \right)^y}\]
Now putting \[{c^z} = ab\]
\[ \Rightarrow {a^{xyz}} = {a^z} \cdot \left( {ab} \right) \cdot {\left( {ab} \right)^y}\]
Applying the formula \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {a^{xyz}} = {a^z} \cdot a \cdot b \cdot {a^y} \cdot {b^y}\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 1}} \cdot {b^y} \cdot b\]
Now putting \[{b^y} = ac\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 1}} \cdot ac \cdot b\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 2}} \cdot bc\]
Now putting \[bc = {a^x}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 2}} \cdot {a^x}\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{x + z + y + 2}}\]
Now compare the power \[a\]
\[ \Rightarrow xyz = x + z + y + 2\]
Hence option B is the correct option.
Note:Students often confused with the formulas \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{\left( {{a^m}} \right)^n} = {a^{m + n}}\]. The correct formulas are \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{a^m} \cdot {a^n} = {a^{m + n}}\].
Formula Used:
\[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[{\left( {ab} \right)^m} = {a^m}{b^m}\]
Complete step by step solution:
Given that,
\[{a^x} = bc\], \[{b^y} = ac\], and \[{c^z} = ab\]
Now raise to power \[y\] on both sides of \[{a^x} = bc\]
\[{\left( {{a^x}} \right)^y} = {\left( {bc} \right)^y}\]
Applying the formulas \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {a^{xy}} = {b^y}{c^y}\]
Putting \[{b^y} = ac\]
\[ \Rightarrow {a^{xy}} = ac \cdot {c^y}\]
Now raise to power \[z\] on both sides of the equation
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {\left( {ac \cdot {c^y}} \right)^z}\]
Applying the formula \[{\left( {{a^m}} \right)^n} = {a^{mn}}\]
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {a^z}{c^z}{c^{yz}}\]
\[ \Rightarrow {\left( {{a^{xy}}} \right)^z} = {a^z}{c^z}{\left( {{c^z}} \right)^y}\]
Now putting \[{c^z} = ab\]
\[ \Rightarrow {a^{xyz}} = {a^z} \cdot \left( {ab} \right) \cdot {\left( {ab} \right)^y}\]
Applying the formula \[{\left( {ab} \right)^m} = {a^m}{b^m}\]
\[ \Rightarrow {a^{xyz}} = {a^z} \cdot a \cdot b \cdot {a^y} \cdot {b^y}\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 1}} \cdot {b^y} \cdot b\]
Now putting \[{b^y} = ac\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 1}} \cdot ac \cdot b\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 2}} \cdot bc\]
Now putting \[bc = {a^x}\]
\[ \Rightarrow {a^{xyz}} = {a^{z + y + 2}} \cdot {a^x}\]
Apply the formula \[{a^m} \cdot {a^n} = {a^{m + n}}\]
\[ \Rightarrow {a^{xyz}} = {a^{x + z + y + 2}}\]
Now compare the power \[a\]
\[ \Rightarrow xyz = x + z + y + 2\]
Hence option B is the correct option.
Note:Students often confused with the formulas \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{\left( {{a^m}} \right)^n} = {a^{m + n}}\]. The correct formulas are \[{\left( {{a^m}} \right)^n} = {a^{mn}}\] and \[{a^m} \cdot {a^n} = {a^{m + n}}\].
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main Response Sheet 2026 Released – Key Dates and Official Updates by NTA

JEE Main 2026 Shift-Wise Marks vs Percentile vs Rank – Session 1 Detailed Analysis

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

