
If \[\alpha \]and \[\beta \]are the roots of \[\begin{array}{*{20}{c}}
{6{x^2} - 6x + 1}& = &0
\end{array}\], then the value of
\[\dfrac{1}{2}\left[ {a + b\alpha + c{\alpha ^2} + d{\alpha ^3}} \right] + \dfrac{1}{2}\left[ {a + b\beta + c{\beta ^2} + d{\beta ^3}} \right]\] is
A) \[\dfrac{1}{4}\left( {a + b + c + d} \right)\]
B) \[\dfrac{a}{1} + \dfrac{b}{2} + \dfrac{c}{3} + \dfrac{d}{4}\]
C) \[\dfrac{a}{2} - \dfrac{b}{2} + \dfrac{c}{3} - \dfrac{d}{4}\]
D) None of these
Answer
232.8k+ views
Hint: during this question we've got given the equation whose roots area unit given. 1st of all, we are going to verify the add and therefore the product of the roots of the given equation. so we are going to modify the given expression. afterward, we are going to place these values within the expression. Hence, we are going to get an acceptable answer.
Formula Used:1) \[\begin{array}{*{20}{c}}
{\alpha + \beta }& = &{ - \dfrac{b}{a}}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\alpha \beta }& = &{\dfrac{c}{a}}
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{{{\left( {\alpha + \beta } \right)}^2}}& = &{{\alpha ^2} + {\beta ^2} + 2\alpha \beta }
\end{array}\]
4) \[\begin{array}{*{20}{c}}
{{{\left( {\alpha + \beta } \right)}^3}}& = &{{\alpha ^3} + {\beta ^3} + 3\alpha \beta \left( {\alpha + \beta } \right)}
\end{array}\]
Complete step by step solution:According to the question, we have the equation whose roots are \[\alpha \]and \[\beta \]respectively. Now we will write the equation,
\[ \Rightarrow \begin{array}{*{20}{c}}
{6{x^2} - 6x + 1}& = &0
\end{array}\]
Now we will determine the sum and the product of the roots of the equation. Therefore, we can write
\[\begin{array}{*{20}{c}}
{ \Rightarrow \alpha + \beta }& = &{\dfrac{6}{6}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \alpha + \beta }& = &1
\end{array}\] ------ (1)
And we know the product of the roots of the equation. Therefore, we can write it as
\[\begin{array}{*{20}{c}}
{ \Rightarrow \alpha \beta }& = &{\dfrac{1}{6}}
\end{array}\] -------- (2)
Now we have given an expression whose value we have to determine.
\[ \Rightarrow \dfrac{1}{2}\left[ {a + b\alpha + c{\alpha ^2} + d{\alpha ^3}} \right] + \dfrac{1}{2}\left[ {a + b\beta + c{\beta ^2} + d{\beta ^3}} \right]\]
Now we will take the common \[\dfrac{1}{2}\]from the above expression. Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {\left( {a + b\alpha + c{\alpha ^2} + d{\alpha ^3}} \right) + \left( {a + b\beta + c{\beta ^2} + d{\beta ^3}} \right)} \right]\]
Now we will combine the same variable terms. Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( {\alpha + \beta } \right) + c\left( {{\alpha ^2} + {\beta ^2}} \right) + d\left( {{\alpha ^3} + {\beta ^3}} \right)} \right]\] ---------- (3)
Now we know the formula of the \[{\left( {\alpha + \beta } \right)^2}\]and \[{\left( {\alpha + \beta } \right)^3}\]. Therefore, we will write is as
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {\alpha + \beta } \right)}^2}}& = &{{\alpha ^2} + {\beta ^2} + 2\alpha \beta }
\end{array}\]
Now
\[\begin{array}{*{20}{c}}
{ \Rightarrow {\alpha ^2} + {\beta ^2}}& = &{{{\left( {\alpha + \beta } \right)}^2} - 2\alpha \beta }
\end{array}\]
Similarly,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {\alpha ^3} + {\beta ^3}}& = &{{{\left( {\alpha + \beta } \right)}^3} - 3\alpha \beta \left( {\alpha + \beta } \right)}
\end{array}\]
Now we will put these values in equation (3). Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( {\alpha + \beta } \right) + c\left\{ {{{\left( {\alpha + \beta } \right)}^2} - 2\alpha \beta } \right\} + d\left\{ {{{\left( {\alpha + \beta } \right)}^3} - 3\alpha \beta \left( {\alpha + \beta } \right)} \right\}} \right]\]
Now we will put the value of the equation (1) and (2) in the above expression. Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( 1 \right) + c\left\{ {{{\left( 1 \right)}^2} - 2 \times \dfrac{1}{6}} \right\} + d\left\{ {{{\left( 1 \right)}^3} - 3 \times \dfrac{1}{6}\left( 1 \right)} \right\}} \right]\]
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( 1 \right) + c\left( {\dfrac{2}{3}} \right) + d\left( {\dfrac{1}{2}} \right)} \right]\]
By simplifying the on top of the expression, we are going to get
\[ \Rightarrow \dfrac{a}{1} + \dfrac{b}{2} + \dfrac{c}{3} + \dfrac{d}{4}\]
Now we can choose the correct answer from the given option.
Option ‘B’ is correct
Note: In this question, the first point is to keep in mind that we will put the value of the sum and the product of the roots of the equation when we will get the simplified expression.
Formula Used:1) \[\begin{array}{*{20}{c}}
{\alpha + \beta }& = &{ - \dfrac{b}{a}}
\end{array}\]
2) \[\begin{array}{*{20}{c}}
{\alpha \beta }& = &{\dfrac{c}{a}}
\end{array}\]
3) \[\begin{array}{*{20}{c}}
{{{\left( {\alpha + \beta } \right)}^2}}& = &{{\alpha ^2} + {\beta ^2} + 2\alpha \beta }
\end{array}\]
4) \[\begin{array}{*{20}{c}}
{{{\left( {\alpha + \beta } \right)}^3}}& = &{{\alpha ^3} + {\beta ^3} + 3\alpha \beta \left( {\alpha + \beta } \right)}
\end{array}\]
Complete step by step solution:According to the question, we have the equation whose roots are \[\alpha \]and \[\beta \]respectively. Now we will write the equation,
\[ \Rightarrow \begin{array}{*{20}{c}}
{6{x^2} - 6x + 1}& = &0
\end{array}\]
Now we will determine the sum and the product of the roots of the equation. Therefore, we can write
\[\begin{array}{*{20}{c}}
{ \Rightarrow \alpha + \beta }& = &{\dfrac{6}{6}}
\end{array}\]
\[\begin{array}{*{20}{c}}
{ \Rightarrow \alpha + \beta }& = &1
\end{array}\] ------ (1)
And we know the product of the roots of the equation. Therefore, we can write it as
\[\begin{array}{*{20}{c}}
{ \Rightarrow \alpha \beta }& = &{\dfrac{1}{6}}
\end{array}\] -------- (2)
Now we have given an expression whose value we have to determine.
\[ \Rightarrow \dfrac{1}{2}\left[ {a + b\alpha + c{\alpha ^2} + d{\alpha ^3}} \right] + \dfrac{1}{2}\left[ {a + b\beta + c{\beta ^2} + d{\beta ^3}} \right]\]
Now we will take the common \[\dfrac{1}{2}\]from the above expression. Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {\left( {a + b\alpha + c{\alpha ^2} + d{\alpha ^3}} \right) + \left( {a + b\beta + c{\beta ^2} + d{\beta ^3}} \right)} \right]\]
Now we will combine the same variable terms. Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( {\alpha + \beta } \right) + c\left( {{\alpha ^2} + {\beta ^2}} \right) + d\left( {{\alpha ^3} + {\beta ^3}} \right)} \right]\] ---------- (3)
Now we know the formula of the \[{\left( {\alpha + \beta } \right)^2}\]and \[{\left( {\alpha + \beta } \right)^3}\]. Therefore, we will write is as
\[\begin{array}{*{20}{c}}
{ \Rightarrow {{\left( {\alpha + \beta } \right)}^2}}& = &{{\alpha ^2} + {\beta ^2} + 2\alpha \beta }
\end{array}\]
Now
\[\begin{array}{*{20}{c}}
{ \Rightarrow {\alpha ^2} + {\beta ^2}}& = &{{{\left( {\alpha + \beta } \right)}^2} - 2\alpha \beta }
\end{array}\]
Similarly,
\[\begin{array}{*{20}{c}}
{ \Rightarrow {\alpha ^3} + {\beta ^3}}& = &{{{\left( {\alpha + \beta } \right)}^3} - 3\alpha \beta \left( {\alpha + \beta } \right)}
\end{array}\]
Now we will put these values in equation (3). Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( {\alpha + \beta } \right) + c\left\{ {{{\left( {\alpha + \beta } \right)}^2} - 2\alpha \beta } \right\} + d\left\{ {{{\left( {\alpha + \beta } \right)}^3} - 3\alpha \beta \left( {\alpha + \beta } \right)} \right\}} \right]\]
Now we will put the value of the equation (1) and (2) in the above expression. Therefore, we will get
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( 1 \right) + c\left\{ {{{\left( 1 \right)}^2} - 2 \times \dfrac{1}{6}} \right\} + d\left\{ {{{\left( 1 \right)}^3} - 3 \times \dfrac{1}{6}\left( 1 \right)} \right\}} \right]\]
\[ \Rightarrow \dfrac{1}{2}\left[ {2a + b\left( 1 \right) + c\left( {\dfrac{2}{3}} \right) + d\left( {\dfrac{1}{2}} \right)} \right]\]
By simplifying the on top of the expression, we are going to get
\[ \Rightarrow \dfrac{a}{1} + \dfrac{b}{2} + \dfrac{c}{3} + \dfrac{d}{4}\]
Now we can choose the correct answer from the given option.
Option ‘B’ is correct
Note: In this question, the first point is to keep in mind that we will put the value of the sum and the product of the roots of the equation when we will get the simplified expression.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Response Sheet 2026 Released – Key Dates and Official Updates by NTA

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

