
If ${a_1},{a_2},...{a_n}$are in A.P, then $\dfrac{1}{{{a_1}{a_2}}},\dfrac{1}{{{a_2}{a_3}}},...~\dfrac{1}{{{a_{n - 1}}{a_n}}}$is
A. $\dfrac{{n - 1}}{{{a_1}{a_n}}}$
B. $\dfrac{1}{{{a_1}{a_n}}}$
C. $\dfrac{{n + 1}}{{{a_1}{a_n}}}$
D. $\dfrac{n}{{{a_1}{a_n}}}$
Answer
232.8k+ views
Hint: In this question, we will find the common difference of the given A.P then substitute all the values and simply after that we will use the formula of the $n^{th}$ term of A.P to find the result.
Formula Used:
1. ${a_n} = a + \left( {n - 1} \right)d$
2. d = Second term - First term
Complete step by step solution:
We are given that ${a_1},{\text{ }}{a_2}, \ldots {a_n}$ are in A.P
Let $d$ be the common difference between A.P
$d{\text{ }} = {\text{ }}{a_2} - {a_1}\; = {\text{ }}{a_3} - {a_2}\; = {\text{ }}{a_4} - {a_3}\; \ldots . = {\text{ }}{a_n} - {a_{n - 1}}$
So,
$
\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \left( {\dfrac{1}{d}} \right)\left( {\dfrac{d}{{{a_1}{a_2}}} + \dfrac{d}{{{a_2}{a_3}}} + .... + \dfrac{d}{{{a_{n - 1}}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{\left( {{a_2} - {a_1}} \right)}}{{{a_1}{a_2}}} + \dfrac{{\left( {{a_3} - {a_2}} \right)}}{{{a_2}{a_3}}} + ...\dfrac{{\left( {{a_n} - {a_{n - 1}}} \right)}}{{{a_{n - 1}}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\left( {\dfrac{{{a_2}}}{{{a_1}{a_2}}} - \dfrac{{{a_1}}}{{{a_1}{a_2}}}} \right) + \left( {\dfrac{{{a_3}}}{{{a_2}{a_3}}} - \dfrac{{{a_2}}}{{{a_2}{a_3}}}} \right) + ....\left( {\dfrac{{{a_n}}}{{{a_{n - 1}}{a_n}}} - \dfrac{{{a_{n - 1}}}}{{{a_{n - 1}}{a_n}}}} \right)} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{1}{{{a_1}}} - \dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_2}}} - \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 1}}}} - \dfrac{1}{{{a_n}}}} \right) \\
$
Further solving we get
$
\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \left( {\dfrac{1}{d}} \right)\left( {\dfrac{1}{{{a_1}}} - \dfrac{1}{{{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{{a_n} - {a_1}}}{{{a_1}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{{a_1} + \left( {n - 1} \right)d - {a_1}}}{{{a_1}{a_n}}}} \right)~~~~~\left( {\because {a_n} = a + \left( {n - 1} \right)d} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{\left( {n - 1} \right)d}}{{{a_1}{a_n}}}} \right) \\
$
Furthermore, solving we get
$\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \dfrac{{n - 1}}{{{a_1}{a_n}}}$
Option ‘A’ is correct
Note: To make the problem simpler and easier to solve, we must recall the formulas of an A.P. series in these types of situations. We may get the values of variables in the series using the A.P. series formula, and then use them to calculate the desired solutions to the problem. We come across quite a few examples of advancement in our daily lives. For example, class roll numbers.
Formula Used:
1. ${a_n} = a + \left( {n - 1} \right)d$
2. d = Second term - First term
Complete step by step solution:
We are given that ${a_1},{\text{ }}{a_2}, \ldots {a_n}$ are in A.P
Let $d$ be the common difference between A.P
$d{\text{ }} = {\text{ }}{a_2} - {a_1}\; = {\text{ }}{a_3} - {a_2}\; = {\text{ }}{a_4} - {a_3}\; \ldots . = {\text{ }}{a_n} - {a_{n - 1}}$
So,
$
\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \left( {\dfrac{1}{d}} \right)\left( {\dfrac{d}{{{a_1}{a_2}}} + \dfrac{d}{{{a_2}{a_3}}} + .... + \dfrac{d}{{{a_{n - 1}}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{\left( {{a_2} - {a_1}} \right)}}{{{a_1}{a_2}}} + \dfrac{{\left( {{a_3} - {a_2}} \right)}}{{{a_2}{a_3}}} + ...\dfrac{{\left( {{a_n} - {a_{n - 1}}} \right)}}{{{a_{n - 1}}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\left( {\dfrac{{{a_2}}}{{{a_1}{a_2}}} - \dfrac{{{a_1}}}{{{a_1}{a_2}}}} \right) + \left( {\dfrac{{{a_3}}}{{{a_2}{a_3}}} - \dfrac{{{a_2}}}{{{a_2}{a_3}}}} \right) + ....\left( {\dfrac{{{a_n}}}{{{a_{n - 1}}{a_n}}} - \dfrac{{{a_{n - 1}}}}{{{a_{n - 1}}{a_n}}}} \right)} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{1}{{{a_1}}} - \dfrac{1}{{{a_2}}} + \dfrac{1}{{{a_2}}} - \dfrac{1}{{{a_3}}} + ... + \dfrac{1}{{{a_{n - 1}}}} - \dfrac{1}{{{a_n}}}} \right) \\
$
Further solving we get
$
\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \left( {\dfrac{1}{d}} \right)\left( {\dfrac{1}{{{a_1}}} - \dfrac{1}{{{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{{a_n} - {a_1}}}{{{a_1}{a_n}}}} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{{a_1} + \left( {n - 1} \right)d - {a_1}}}{{{a_1}{a_n}}}} \right)~~~~~\left( {\because {a_n} = a + \left( {n - 1} \right)d} \right) \\
= \left( {\dfrac{1}{d}} \right)\left( {\dfrac{{\left( {n - 1} \right)d}}{{{a_1}{a_n}}}} \right) \\
$
Furthermore, solving we get
$\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + ...... + \dfrac{1}{{{a_{n - 1}}{a_n}}} = \dfrac{{n - 1}}{{{a_1}{a_n}}}$
Option ‘A’ is correct
Note: To make the problem simpler and easier to solve, we must recall the formulas of an A.P. series in these types of situations. We may get the values of variables in the series using the A.P. series formula, and then use them to calculate the desired solutions to the problem. We come across quite a few examples of advancement in our daily lives. For example, class roll numbers.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Response Sheet 2026 Released – Key Dates and Official Updates by NTA

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

