
Formula for number of images formed by two plane mirrors incident at an angle $\theta $ is $n$ = $\dfrac{{360^\circ }}{\theta }$. If n is even, the number of images is n-1, if n is an odd number of images.
Column I Column II a) $\theta $ $ = $ $60^\circ $ 1) n $ = $ 9 b) $\theta $ $ = $ $60^\circ $ 2) n $ = $ 3 c) $\theta $ $ = $ $60^\circ $ 3) n $ = $ 5 d) $\theta $ $ = $ $60^\circ $ 4) n $ = $ 7 5) n $ = $ 1
| Column I | Column II |
| a) $\theta $ $ = $ $60^\circ $ | 1) n $ = $ 9 |
| b) $\theta $ $ = $ $60^\circ $ | 2) n $ = $ 3 |
| c) $\theta $ $ = $ $60^\circ $ | 3) n $ = $ 5 |
| d) $\theta $ $ = $ $60^\circ $ | 4) n $ = $ 7 |
| 5) n $ = $ 1 |
Answer
511.9k+ views
Hint: Image is defined as the collection of focus points of light rays coming from an object. If the image of the object is viewed in two plane mirrors that are inclined to each other, more than one image is formed. The number of images formed by two plane mirrors depends on the angle between the mirror.
Complete step by step solution:
Given the angle is $\theta $.
If the value of $\dfrac{{360^\circ }}{\theta }$is even, then we will use the formula
No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
If the value $\dfrac{{360^\circ }}{\theta }$is odd, then we will use the formula
No. of images $ = $$\dfrac{{360^\circ }}{\theta }$
a) When $\theta $ $ = $ $60^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{60^\circ }}$$ = $ 6, where 6 is an even number.
we will use the formula for No. of images $ = $ $\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 6 $ - $1 $ = $ 5
Thus, the images formed will be 5.
b) When $\theta $ $ = $ $40^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{40^\circ }}$$ = $ 9, where 9 is an odd number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta }$$ = $ 9
Thus, the images formed will be 9.
c) When $\theta $ $ = $ $90^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{90^\circ }}$$ = $ 4, where 4 is an even number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 4 $ - $1 $ = $ 3
Thus, the images formed will be 3.
d) When $\theta $ $ = $ $180^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{180^\circ }}$$ = $ 2, where 2 is an even number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 2 $ - $1 $ = $ 1
Thus, the images formed will be 1.
Hence the correct option for the problem is a $ = $3, b $ = $1, c $ = $2, d $ = $5.
Note: 1) If $\dfrac{{360^\circ }}{\theta }$ is a fraction, then the number of images formed will be equal to its integral part.
2) The smaller the angle, the greater the number of images.
Complete step by step solution:
Given the angle is $\theta $.
If the value of $\dfrac{{360^\circ }}{\theta }$is even, then we will use the formula
No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
If the value $\dfrac{{360^\circ }}{\theta }$is odd, then we will use the formula
No. of images $ = $$\dfrac{{360^\circ }}{\theta }$
a) When $\theta $ $ = $ $60^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{60^\circ }}$$ = $ 6, where 6 is an even number.
we will use the formula for No. of images $ = $ $\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 6 $ - $1 $ = $ 5
Thus, the images formed will be 5.
b) When $\theta $ $ = $ $40^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{40^\circ }}$$ = $ 9, where 9 is an odd number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta }$$ = $ 9
Thus, the images formed will be 9.
c) When $\theta $ $ = $ $90^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{90^\circ }}$$ = $ 4, where 4 is an even number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 4 $ - $1 $ = $ 3
Thus, the images formed will be 3.
d) When $\theta $ $ = $ $180^\circ $
Let us find the value of $\dfrac{{360^\circ }}{\theta }$
So, $\dfrac{{360^\circ }}{{180^\circ }}$$ = $ 2, where 2 is an even number.
we will use the formula for No. of images $ = $$\dfrac{{360^\circ }}{\theta } - 1$
$ \Rightarrow $ 2 $ - $1 $ = $ 1
Thus, the images formed will be 1.
Hence the correct option for the problem is a $ = $3, b $ = $1, c $ = $2, d $ = $5.
Note: 1) If $\dfrac{{360^\circ }}{\theta }$ is a fraction, then the number of images formed will be equal to its integral part.
2) The smaller the angle, the greater the number of images.
Recently Updated Pages
A square frame of side 10 cm and a long straight wire class 12 physics JEE_Main

The work done in slowly moving an electron of charge class 12 physics JEE_Main

Two identical charged spheres suspended from a common class 12 physics JEE_Main

According to Bohrs theory the timeaveraged magnetic class 12 physics JEE_Main

ill in the blanks Pure tungsten has A Low resistivity class 12 physics JEE_Main

The value of the resistor RS needed in the DC voltage class 12 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

