
A motorcyclist of mass $m$ is to negotiate a curve of radius $r$ with a speed $v$. The minimum value of the coefficient of friction so that this negotiation may take place safely is?
A. ${v^2}rg$
B. $\dfrac{{{v^2}}}{{gr}}$
C. $\dfrac{{gr}}{{{v^2}}}$
D. $\dfrac{g}{{{v^2}r}}$
Answer
233.1k+ views
Hint: Since there is a downward force (which equals the weight of the body) applied to a body. When a body takes a curve with radius $r$ there is a chance of slipping a body hence, to negotiate the slip the normal force acting opposite to the downward force must be balanced by the centrifugal force.
Complete answer:
Mass of a motorcyclist $ = m$ (given)
Since the gravity $g$ acts downward. Therefore, the weight of a body $ = mg$
Let us consider the normal force $N$ is equal to and opposite to the direction of weight$(mg)$ of a body.
Now, we know that Centrifugal Force acting on the body:
${F_c} = m\dfrac{{{v^2}}}{r}$ where,
v = speed of a body
r = radius of curve taken by body
Also, we know that $F = \mu N$where,
F = Frictional Force and$\mu $= Coefficient of friction
To avoid slip, the frictional force must be balanced by centrifugal force i.e.,
$F = {F_c}$
$\mu N = m\dfrac{{{v^2}}}{r}$
Substitute $N = mg$ in the above expression, we get
$\mu (mg) = m\dfrac{{{v^2}}}{r}$
$\mu = \dfrac{{{v^2}}}{{gr}}$
Thus, the minimum value of the coefficient of friction so that this negotiation may take place safely is $\mu = \dfrac{{{v^2}}}{{gr}}$.
Hence, the correct option is (B) $\mu = \dfrac{{{v^2}}}{{gr}}$ >
Note: Since this is a problem based on the balancing of two different forces hence, given conditions are to be analyzed very carefully and only after which the procedure of solving the problem is identified. To have a better understanding of the formulas used, it is essential to understand which kind of forces influences the problem.
Complete answer:
Mass of a motorcyclist $ = m$ (given)
Since the gravity $g$ acts downward. Therefore, the weight of a body $ = mg$
Let us consider the normal force $N$ is equal to and opposite to the direction of weight$(mg)$ of a body.
Now, we know that Centrifugal Force acting on the body:
${F_c} = m\dfrac{{{v^2}}}{r}$ where,
v = speed of a body
r = radius of curve taken by body
Also, we know that $F = \mu N$where,
F = Frictional Force and$\mu $= Coefficient of friction
To avoid slip, the frictional force must be balanced by centrifugal force i.e.,
$F = {F_c}$
$\mu N = m\dfrac{{{v^2}}}{r}$
Substitute $N = mg$ in the above expression, we get
$\mu (mg) = m\dfrac{{{v^2}}}{r}$
$\mu = \dfrac{{{v^2}}}{{gr}}$
Thus, the minimum value of the coefficient of friction so that this negotiation may take place safely is $\mu = \dfrac{{{v^2}}}{{gr}}$.
Hence, the correct option is (B) $\mu = \dfrac{{{v^2}}}{{gr}}$ >
Note: Since this is a problem based on the balancing of two different forces hence, given conditions are to be analyzed very carefully and only after which the procedure of solving the problem is identified. To have a better understanding of the formulas used, it is essential to understand which kind of forces influences the problem.
Recently Updated Pages
Mass vs Weight: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Difference Between Atom and Molecule: JEE Main 2026

Trending doubts
Understanding Uniform Acceleration in Physics

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main Response Sheet 2026 Released – Key Dates and Official Updates by NTA

Other Pages
Essential Physics Formulas for Class 9: Complete Chapterwise List

Class 11 Physics MCQs: Chapterwise Practice with Answers

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026: Complete List of Valentine Week Days & Meaning of Each Day

One Day International Cricket

List of Highest T20 Scores in International Cricket

