A mass m attached to a spring oscillates every 2 sec. If the mass is increased by 2 kg, then time-period increases by 1 sec. The initial mass is
A. 1.6 kg
B. 3.9 kg
C. 9.6 kg
D. 12.6 kg
Answer
111.6k+ views
Hint: When the mass is attached to the spring, then the motion of the mass is simple harmonic motion with constant time period. The time taken to complete one oscillation is time period. Depending on the spring constant and the mass of the body attached the time period varies.
Formula used:
\[T = 2\pi \sqrt {\dfrac{m}{k}} \], here T is the period, k is the spring constant and m is the mass of the block.
Complete step by step solution:
For the initial case;
Let the spring constant of the spring used in the oscillation is K. The value of the mass is given as m. And the period of oscillator is 2sec
Then using the formula of period of spring-mass oscillator is,
\[T = 2\pi \sqrt {\dfrac{m}{k}} \]
\[2\sec = 2\pi \sqrt {\dfrac{m}{k}} \]
For the final case;
The mass of the block is increased by 2 kg, then the final mass of the block is \[\left( {m + 2} \right)kg\]. The spring constant is same as before.
So, using the formula of period of spring-mass oscillator, the final period is 1 sec greater than the initial period.
So, the final time period is \[{T_2} = 3\sec \]. Using the period formula,
\[{T_2} = 2\pi \sqrt {\dfrac{{{m_2}}}{{{k_2}}}} \]
\[3\sec = 2\pi \sqrt {\dfrac{{m + 2}}{k}} \]
On dividing the first case period with the second period, we get
\[\dfrac{{2\sec }}{{3\sec }} = \dfrac{{\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)}}{{2\pi \sqrt {\dfrac{{m + 2}}{k}} }}\]
\[\dfrac{2}{3} = \sqrt {\left( {\dfrac{m}{{m + 2}}} \right)} \]
On squaring both the sides, we get
\[\dfrac{4}{9} = \dfrac{m}{{m + 2}}\]
\[9m = 4m + 8\]
\[5m = 8\]
\[m = \dfrac{8}{5}\]
\[m = 1.6\]
So, the initial mass is \[1.6kg\]
Therefore, the correct option is (A).
Note: In the question the mass is increased by 2 kg, not twice. We should be careful while writing the relation between the final and initial quantity.
Formula used:
\[T = 2\pi \sqrt {\dfrac{m}{k}} \], here T is the period, k is the spring constant and m is the mass of the block.
Complete step by step solution:
For the initial case;
Let the spring constant of the spring used in the oscillation is K. The value of the mass is given as m. And the period of oscillator is 2sec
Then using the formula of period of spring-mass oscillator is,
\[T = 2\pi \sqrt {\dfrac{m}{k}} \]
\[2\sec = 2\pi \sqrt {\dfrac{m}{k}} \]
For the final case;
The mass of the block is increased by 2 kg, then the final mass of the block is \[\left( {m + 2} \right)kg\]. The spring constant is same as before.
So, using the formula of period of spring-mass oscillator, the final period is 1 sec greater than the initial period.
So, the final time period is \[{T_2} = 3\sec \]. Using the period formula,
\[{T_2} = 2\pi \sqrt {\dfrac{{{m_2}}}{{{k_2}}}} \]
\[3\sec = 2\pi \sqrt {\dfrac{{m + 2}}{k}} \]
On dividing the first case period with the second period, we get
\[\dfrac{{2\sec }}{{3\sec }} = \dfrac{{\left( {2\pi \sqrt {\dfrac{m}{k}} } \right)}}{{2\pi \sqrt {\dfrac{{m + 2}}{k}} }}\]
\[\dfrac{2}{3} = \sqrt {\left( {\dfrac{m}{{m + 2}}} \right)} \]
On squaring both the sides, we get
\[\dfrac{4}{9} = \dfrac{m}{{m + 2}}\]
\[9m = 4m + 8\]
\[5m = 8\]
\[m = \dfrac{8}{5}\]
\[m = 1.6\]
So, the initial mass is \[1.6kg\]
Therefore, the correct option is (A).
Note: In the question the mass is increased by 2 kg, not twice. We should be careful while writing the relation between the final and initial quantity.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Define absolute refractive index of a medium

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Why do noble gases have positive electron gain enthalpy class 11 chemistry CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

What is spore formation class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE
