
A function $f\left( x \right)$ is given by $f\left( x \right) = \dfrac{{{5^x}}}{{{5^x} + 5}}$. Find the sum of the series $f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$.
A. $\dfrac{{19}}{2}$
B. $\dfrac{{49}}{2}$
C. $\dfrac{{39}}{2}$
D. $\dfrac{{29}}{2}$
Answer
232.8k+ views
Hint: First we will put $x = 2 - x$ in the given function. Then we will combine $f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{{39}}{{20}}} \right)$, $f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{{38}}{{20}}} \right)$, and put the value of each sum to calculate the value of given series.
Complete step by step solution:
Given series is $f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$.
Now putting $x = 2 - x$ in the function $f\left( x \right) = \dfrac{{{5^x}}}{{{5^x} + 5}}$
$f\left( {2 - x} \right) = \dfrac{{{5^{2 - x}}}}{{{5^{2 - x}} + 5}}$
$ = \dfrac{{\dfrac{{{5^2}}}{{{5^x}}}}}{{\dfrac{{{5^2}}}{{{5^x}}} + 5}}$
$ = \dfrac{{{5^2}}}{{{5^2} + 5 \cdot {5^x}}}$
Taking common 5 from the denominator and numerator
$ = \dfrac{{5 \cdot 5}}{{5\left( {5 + {5^x}} \right)}}$
Cancel out 5 from the denominator and numerator
$ = \dfrac{5}{{5 + {5^x}}}$
So, $f\left( x \right) + f\left( {2 - x} \right) = \dfrac{{{5^x}}}{{{5^x} + 5}} + \dfrac{5}{{{5^x} + 5}}$
$ = \dfrac{{{5^x} + 5}}{{{5^x} + 5}}$
$ = 1$
Rewrite the given series $f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$
$f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$
$ = \left[ {f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{{39}}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{{38}}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{3}{{20}}} \right) + f\left( {\dfrac{{37}}{{20}}} \right)} \right] + \cdots + \left[ {f\left( {\dfrac{{19}}{{20}}} \right) + f\left( {\dfrac{{21}}{{20}}} \right)} \right] + f\left( {\dfrac{{20}}{{20}}} \right)$
$ = \left[ {f\left( {\dfrac{1}{{20}}} \right) + f\left( {2 - \dfrac{1}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{2}{{20}}} \right) + f\left( {2 - \dfrac{2}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{3}{{20}}} \right) + f\left( {2 - \dfrac{3}{{20}}} \right)} \right] + \cdots + \left[ {f\left( {\dfrac{{19}}{{20}}} \right) + f\left( {2 - \dfrac{{19}}{{20}}} \right)} \right] + f\left( {\dfrac{{20}}{{20}}} \right)$$ = 1 + 1 + 1 + \cdots + 1 + f\left( 1 \right)$
Now putting $x = 1$ in $f\left( x \right) = \dfrac{{{5^x}}}{{{5^x} + 5}}$
$ \Rightarrow 1 + 1 + 1 + \cdots + 1 + \dfrac{{{5^1}}}{{{5^1} + 5}}$
$ \Rightarrow 1 + 1 + 1 + \cdots + 1 + \dfrac{5}{{2 \cdot 5}}$
$ \Rightarrow 1 + 1 + 1 + \cdots + 1 + \dfrac{1}{2}$
$ \Rightarrow 19 + \dfrac{1}{2}$
$ \Rightarrow \dfrac{{39}}{2}$
Option ‘B’ is correct
Note: We often tend to calculate the value of $1 + 1 + 1 + \cdots + 1 + f\left( 1 \right)$ and count as 39’s 1. But we make 19 groups and each group contains 2 functions. So there are 19’s 1.
Complete step by step solution:
Given series is $f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$.
Now putting $x = 2 - x$ in the function $f\left( x \right) = \dfrac{{{5^x}}}{{{5^x} + 5}}$
$f\left( {2 - x} \right) = \dfrac{{{5^{2 - x}}}}{{{5^{2 - x}} + 5}}$
$ = \dfrac{{\dfrac{{{5^2}}}{{{5^x}}}}}{{\dfrac{{{5^2}}}{{{5^x}}} + 5}}$
$ = \dfrac{{{5^2}}}{{{5^2} + 5 \cdot {5^x}}}$
Taking common 5 from the denominator and numerator
$ = \dfrac{{5 \cdot 5}}{{5\left( {5 + {5^x}} \right)}}$
Cancel out 5 from the denominator and numerator
$ = \dfrac{5}{{5 + {5^x}}}$
So, $f\left( x \right) + f\left( {2 - x} \right) = \dfrac{{{5^x}}}{{{5^x} + 5}} + \dfrac{5}{{{5^x} + 5}}$
$ = \dfrac{{{5^x} + 5}}{{{5^x} + 5}}$
$ = 1$
Rewrite the given series $f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$
$f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{3}{{20}}} \right) + \cdots + f\left( {\dfrac{{39}}{{20}}} \right)$
$ = \left[ {f\left( {\dfrac{1}{{20}}} \right) + f\left( {\dfrac{{39}}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{2}{{20}}} \right) + f\left( {\dfrac{{38}}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{3}{{20}}} \right) + f\left( {\dfrac{{37}}{{20}}} \right)} \right] + \cdots + \left[ {f\left( {\dfrac{{19}}{{20}}} \right) + f\left( {\dfrac{{21}}{{20}}} \right)} \right] + f\left( {\dfrac{{20}}{{20}}} \right)$
$ = \left[ {f\left( {\dfrac{1}{{20}}} \right) + f\left( {2 - \dfrac{1}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{2}{{20}}} \right) + f\left( {2 - \dfrac{2}{{20}}} \right)} \right] + \left[ {f\left( {\dfrac{3}{{20}}} \right) + f\left( {2 - \dfrac{3}{{20}}} \right)} \right] + \cdots + \left[ {f\left( {\dfrac{{19}}{{20}}} \right) + f\left( {2 - \dfrac{{19}}{{20}}} \right)} \right] + f\left( {\dfrac{{20}}{{20}}} \right)$$ = 1 + 1 + 1 + \cdots + 1 + f\left( 1 \right)$
Now putting $x = 1$ in $f\left( x \right) = \dfrac{{{5^x}}}{{{5^x} + 5}}$
$ \Rightarrow 1 + 1 + 1 + \cdots + 1 + \dfrac{{{5^1}}}{{{5^1} + 5}}$
$ \Rightarrow 1 + 1 + 1 + \cdots + 1 + \dfrac{5}{{2 \cdot 5}}$
$ \Rightarrow 1 + 1 + 1 + \cdots + 1 + \dfrac{1}{2}$
$ \Rightarrow 19 + \dfrac{1}{2}$
$ \Rightarrow \dfrac{{39}}{2}$
Option ‘B’ is correct
Note: We often tend to calculate the value of $1 + 1 + 1 + \cdots + 1 + f\left( 1 \right)$ and count as 39’s 1. But we make 19 groups and each group contains 2 functions. So there are 19’s 1.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Response Sheet 2026 Released – Key Dates and Official Updates by NTA

JEE Main 2026 Answer Key OUT – Download Session 1 PDF, Response Sheet & Challenge Link

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

