Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 7 Maths Chapter 7 Comparing Quantities Exercise 7.2 - 2025-26

ffImage
banner
widget title icon
Latest Updates

Comparing Quantities Class 7 Questions and Answers - Free PDF Download

Explore the NCERT Solutions For Class 7th Maths chapter 7 Exercise 7.2 Solutions – Comparing Quantities with Vedantu. This chapter covers essential concepts such as ratios, percentages, profit, loss, and simple interest, which are fundamental in understanding financial mathematics and its real-life applications.

toc-symbolTable of Content
toggle-arrow


In Class 7 Math 7.2, we will focus specifically on problems related to profit, loss, and simple interest. This exercise provides a variety of practical problems to apply these concepts. Emphasize understanding the formulas and steps involved in solving these problems. Mastering this exercise will build a solid foundation for more advanced mathematical concepts. These Class 7 Maths NCERT Solutions by Vedantu can be downloaded for free in PDF format.


Glance on NCERT Solutions Maths Chapter 7 Exercise 7.2 Class 7 | Vedantu

  • This exercise explains about Ratios to Percent, Increase or Decrease as Per Cent, Prices related to an item or buying and selling , Profit or Loss as a Percentage, Interest for Multiple Years

  • Ratios to Percent: Convert ratios into percentages for better comparison, making it easier to understand proportions.

  • Increase or Decrease as Percent: Calculate the percentage increase or decrease in quantities to measure growth or reduction effectively.

  • Prices Related to an Item or Buying and Selling: Analyse price changes in buying and selling scenarios to understand profit margins and cost management.

  • Profit or Loss as a Percentage: Determine profit or loss expressed as a percentage of the cost price to evaluate financial performance.

  • Interest for Multiple Years: Compute simple interest for periods spanning multiple years, highlighting the accumulation of interest over time.

  • There are ten questions in Class 7th Maths Chapter 7 Exercise 7.2 Solution Comparing Quantities which are fully solved by experts at Vedantu.


Formulas Used in Class 7 Chapter 7 Exercise 7.2

  • Profit = Selling Price − Cost Price

  • Loss = Cost Price − Selling Price

  • Profit Percentage = Profit % = $\left ( Profit\div Cost Price \right )\times 100$

  • Loss Percentage = Loss % = $\left ( Loss\div Cost Price \right )\times 100$

  • Simple Interest = SI = $Principal \times Rate\times Time \div 100$

  • Amount = Principal + Simple Interest

Access NCERT Solutions for Maths Class 7 Chapter 7 Comparing Quantities

Exercise 7.2

1. Tell what is the profit or loss in the following transactions. Also find profit percent or loss percent in each case.

a. Gardening shears bought for ₹250 and sold for ₹325.

Ans: It is given that the gardening shears are bought for ₹250 and sold for ₹325. This means that the cost price is ₹250 and the selling price is ₹325.

It is observed that the selling price is greater than the cost price, that is, ${\text{S}}{\text{.P}} > {\text{C}}{\text{.P}}$

Thus, a profit is occurring, which is calculated as cost price subtracted from the selling price.

${\text{Profit}} = {\text{S}}{\text{.P}} - {\text{C}}{\text{.P}}$

${\text{Profit}} = 325 - 250$

${\text{Profit}} = 75$

Thus, the profit is found to be ₹75.

Now, the profit percent is given by the formula,

${\text{Profit }}\%  = \dfrac{{{\text{Profit}}}}{{{\text{C}}{\text{.P}}}} \times 100$

Substitute 75 for profit and 250 for C.P in the above formula.

${\text{Profit }}\%  = \dfrac{{{\text{75}}}}{{250}} \times 100$

${\text{Profit }}\%  = 30\% $

Therefore, the profit is found to be ₹75 and profit $\% $ is $30\% $.

b. A refrigerator bought ₹12,000 and sold at ₹13,500.

Ans: It is given that a refrigerator is bought for ₹12,000 and sold for ₹13,500. This means that the cost price is ₹12,000 and the selling price is ₹13,500.

It is observed that the selling price is greater than the cost price, that is, ${\text{S}}{\text{.P}} > {\text{C}}{\text{.P}}$.

Thus, a profit is occurring, which is calculated as cost price subtracted from the selling price.

${\text{Profit}} = {\text{S}}{\text{.P}} - {\text{C}}{\text{.P}}$

${\text{Profit}} = 13500 - 12000$

${\text{Profit}} = 1500$

Thus, the profit is found to be ₹1,500.

Now, the profit percent is given by the formula,

${\text{Profit }}\%  = \dfrac{{{\text{Profit}}}}{{{\text{C}}{\text{.P}}}} \times 100$

Substitute 1500 for profit and 12000 for C.P in the above formula.

${\text{Profit }}\%  = \dfrac{{{\text{1500}}}}{{12000}} \times 100$

${\text{Profit }}\%  = 12.5\% $

Therefore, the profit is found to be ₹1500 and profit $\% $ is $12.5\% $.

c. A cupboard bought for ₹2,500 and sold at ₹3,000.

Ans: It is given that a cupboard is bought for ₹2,500 and sold for ₹3,000. This means that the cost price is ₹2,500 and the selling price is ₹3,000.

It is observed that the selling price is greater than the cost price, that is, ${\text{S}}{\text{.P}} > {\text{C}}{\text{.P}}$.

Thus, a profit is occurring, which is calculated as cost price subtracted from the selling price.

${\text{Profit}} = {\text{S}}{\text{.P}} - {\text{C}}{\text{.P}}$

${\text{Profit}} = 3000 - 2500$

${\text{Profit}} = 500$

Thus, the profit is found to be ₹500.

Now, the profit percent is given by the formula,

${\text{Profit }}\%  = \dfrac{{{\text{Profit}}}}{{{\text{C}}{\text{.P}}}} \times 100$

Substitute 500 for profit and 2500 for C.P in the above formula.

${\text{Profit }}\%  = \dfrac{{{\text{500}}}}{{2500}} \times 100$

${\text{Profit }}\%  = 20\% $

Therefore, the profit is found to be ₹500 and profit$\% $ is $20\% $.

d. A skirt bought for ₹250 and sold at ₹150.

Ans:It is given that a skirt is bought for ₹250 and sold for ₹150. This means that the cost price is ₹250 and the selling price is ₹150.

It is observed that the selling price is lesser than the cost price, that is, ${\text{S}}{\text{.P}} < {\text{C}}{\text{.P}}$.

Thus, a loss is being occurred, which is calculated as the selling price subtracted from the cost price.

${\text{Loss}} = {\text{C}}{\text{.P}} - {\text{S}}{\text{.P}}$

${\text{Loss}} = 250 - 150$

${\text{Loss}} = 100$

Thus, the loss is found to be ₹100.

Now, the profit percent is given by the formula,

${\text{Loss}}\%  = \dfrac{{{\text{Loss}}}}{{{\text{C}}{\text{.P}}}} \times 100$

Substitute 100 for loss and 250 for C.P in the above formula.

${\text{Loss}}\%  = \dfrac{{{\text{100}}}}{{250}} \times 100$

${\text{Loss}}\%  = 40\% $

Therefore, the loss is found to be ₹100 and loss$\% $ is $40\% $.

2. Convert each part of the ratio to percentage:

a. The ratio is $3:1$.

Ans: The total part is found to be $3 + 1 = 4$.

Thus, the parts in fractional form can be written as $\dfrac{3}{4}$ and $\dfrac{1}{4}$.

Therefore, the percentage of each part is obtained by multiplying the fractional part by 100.

${\text{Percentages of parts}} = \dfrac{3}{4} \times 100:\dfrac{1}{4} \times 100$

On evaluating further,

${\text{Percentages of parts}} = \dfrac{{300}}{4}:\dfrac{{100}}{4}$

${\text{Percentages of parts}} = 75:25$

Therefore, the part of the ratio to percentage is $75\% :25\% $.

b. The ratio is $2:3:5$.

Ans: The total part is found to be $2 + 3 + 5 = 10$.

Thus, the parts in fractional form can be written as $\dfrac{2}{{10}}$, $\dfrac{3}{{10}}$ and $\dfrac{5}{{10}}$.

Therefore, the percentage of each part is obtained by multiplying the fractional part by 100.

${\text{Percentages of parts}} = \dfrac{2}{{10}} \times 100:\dfrac{3}{{10}} \times 100:\dfrac{5}{{10}} \times 100$

On evaluating further,

${\text{Percentages of parts}} = \dfrac{{200}}{{10}}:\dfrac{{300}}{{10}}:\dfrac{{500}}{{10}}$

${\text{Percentages of parts}} = 20:30:50$

Therefore, the part of the ratio to percentage is $20\% :30\% :50\% $.

c. The ratio is $1:4$.

Ans: The total part is found to be $1 + 4 = 5$.

Thus, the parts in fractional form can be written as $\dfrac{1}{5}$ and $\dfrac{4}{5}$.

Therefore, the percentage of each part is obtained by multiplying the fractional part by 100.

${\text{Percentages of parts}} = \dfrac{1}{5} \times 100:\dfrac{4}{5} \times 100$

On evaluating further,

${\text{Percentages of parts}} = \dfrac{{100}}{5}:\dfrac{{400}}{5}$

${\text{Percentages of parts}} = 20:80$

Therefore, the part of the ratio to percentage is $20\% :80\% $.

d. The ratio is $1:2:5$.

Ans: The total part is found to be $1 + 2 + 5 = 8$.

Thus, the parts in fractional form can be written as $\dfrac{1}{8}$, $\dfrac{2}{8}$ and $\dfrac{5}{8}$.

Therefore, the percentage of each part is obtained by multiplying the fractional part by 100.

${\text{Percentages of parts}} = \dfrac{1}{8} \times 100:\dfrac{2}{8} \times 100:\dfrac{5}{8} \times 100$

On evaluating further,

${\text{Percentages of parts}} = \dfrac{{100}}{8}:\dfrac{{200}}{8}:\dfrac{{500}}{8}$

${\text{Percentages of parts}} = 12.5:25:62.5$

Therefore, the part of the ratio to percentage is $12.5\% :25\% :62.5\% $.

3. The population of a city decreased from 25,000 to 24,500. Find the percentage decrease.

Ans: It is known from the given information that the population of a city has decreased from 25,000 to 24,500. 

Thus, the population decreased by $\left( {25,000 - 24,500} \right) = 500$.

The formula to find the decreased percentage is given as follows,

${\text{Decreased Percentage}} = \dfrac{{{\text{Population decreased}}}}{{{\text{Original population}}}} \times 100$

Substitute 500 for population decrease and 25000 for original population in the above formula.

${\text{Decreased Percentage}} = \dfrac{{{\text{500}}}}{{{\text{25000}}}} \times 100$

${\text{Decreased Percentage}} = \dfrac{{{\text{500}}}}{{{\text{25000}}}} \times 100$

${\text{Decreased Percentage}} = 2\% $

Therefore, the decreased percentage is found to be $2\% $.

4. Arun bought a car for ₹3,50,000. The next year, the price went up to ₹3,70,000. What was the percentage of price increase?

Ans: It is given that Arun bought a car for ₹3,50,000 and the next year the prices went up to ₹3,70,000.

The price of a car increases from ₹3,50,000 to ₹3,70,000. Thus, the amount by which the price is increased is,

${\text{Amount increase}} = 370000 - 350000$

${\text{Amount increase}} = 20000$

Therefore, the amount increased to ₹20,000.

Now, the increased percentage can be given by the formula,

${\text{Increased percentage}} = \dfrac{{{\text{Amount increased}}}}{{{\text{Original amount }}}} \times 100$

Substitute 20000 for Amount increased and 350000 for the original amount in the above formula.

${\text{Increased percentage}} = \dfrac{{{\text{20000}}}}{{{\text{350000}}}} \times 100$

${\text{Increased percentage}} = 5\dfrac{5}{7}\% $

Hence, the percentage of price increase is found to be $5\dfrac{5}{7}\% $.

5. I buy a T.V. for ₹10,000 and sell it at a profit of $20\% $. How much money do I get for it?

Ans: The T.V. is bought for ₹10,000 and is sold at a profit of $20\% $. This means that the cost price of the T.V. is ₹10,000 and the profit percent is $20\% $.

Thus, profit will be the profit $\% $ of C.P which is given as,

${\text{Profit}} = {\text{Profit }}\% {\text{ of C}}{\text{.P}}$

${\text{Profit}} = \dfrac{{20}}{{100}}{\text{of 10,000}}$

${\text{Profit}} = \dfrac{{20}}{{100}} \times {\text{ 10,000}}$

${\text{Profit}} = 2,000$

Now, the selling price is the sum of cost price and the profit.

${\text{Selling price}} = {\text{Cost price}} + {\text{Profit}}$

${\text{Selling price}} = 10,000 + 2,000$

${\text{Selling price}} = 12,000$

Therefore, he gets ₹12,000 for selling the T.V he bought for ₹10,000.

6. Juhi sells a washing machine for ₹13,500. She loses $20\% $ in the bargain. What was the price at which she bought it?

Ans: The washing machine is sold by Juhi for ₹13,500 and she loses $20\% $ in the bargain. This means that the selling price of the washing machine is ₹13,500 and the loss percent is $20\% $.

Assume the cost price of the washing machine to be $x$.

Thus, loss will be the loss $\% $ of C.P which is given as,

${\text{Loss}} = {\text{Loss }}\% {\text{ of C}}{\text{.P}}$

${\text{Loss}} = 20\% {\text{ of }}x$

${\text{Loss}} = \dfrac{{20}}{{100}} \times x$

${\text{Loss}} = \dfrac{{20}}{{100}} \times x$

${\text{Loss}} = \dfrac{x}{5}$

It is known that, ${\text{S}}{\text{.P}} = {\text{C}}{\text{.P}} - {\text{Loss}}$.

Thus,

$13500 = x - \dfrac{x}{5}$

$13500 = \dfrac{{4x}}{5}$

$x = \dfrac{{13500 \times 5}}{4}$

$x = 16,875$

Therefore, the cost price of the washing machine is found to be ₹16,875.

7. (i) Chalk contains Calcium, Carbon and Oxygen in the ratio 10 : 3 : 12. Find the percentage of Carbon in chalk.

Ans: The ratio of Calcium, Carbon and Oxygen in the chalk is $10:3:12$. 

Thus, the total part will be the addition of the ratios, that is, $\left( {10 + 3 + 12} \right) = 15$.

The part of the carbon is found to be 3 from the given ratio.

The fractional part can be written as $\dfrac{3}{{25}}$.

Thus, the percentage of Carbon part in the chalk is given by,

${\text{Percentage of Carbon part in the chalk}} = \dfrac{3}{{25}} \times 100$

${\text{Percentage of Carbon part in the chalk}} = 12\% $

Therefore, the percentage of Carbon in the chalk is found to be $12\% $.

(ii) If in a stick of chalk, Carbon is 3 g, what is the weight of the chalk stick?

Ans: It is given that the quantity of Carbon in the chalk stick is 3g. Assume the weight of chalk is $x$ g.

The percentage of Carbon part in the chalk is found to be $12\% $. 

Thus,

$12\% {\text{ of }}x = 3$

$\dfrac{{12}}{{100}} \times x = 3$

$x = \dfrac{{3 \times 100}}{{12}}$

$x = 25$

Therefore, the weight of the chalk is obtained to be 25g.

8. Amina buys a book for ₹275 and sells it at a loss of $15\% $. How much does she sell it for?

Ans: The book bought by Amine costs ₹275 and it is sold at a loss of $15\% $. This means that the cost price of the book is ₹275 and the loss percent is $15\% $.

Thus, loss will be the loss $\% $ of C.P which is given as,

${\text{Loss}} = {\text{Loss }}\% {\text{ of C}}{\text{.P}}$

${\text{Loss}} = 15\% {\text{ of 275}}$

${\text{Loss}} = \dfrac{{15}}{{100}} \times 275$

${\text{Loss}} = 41.25$

Thus, there was a loss of ₹41.25.

Now, 

${\text{S}}{\text{.P = C}}{\text{.P}} - {\text{Loss}}$

Substitute 275 for C.P and $41.25$ for loss in the above formula.

${\text{S}}{\text{.P}} = 275 - 41.25$

${\text{S}}{\text{.P}} = 233.75$

Therefore, the price at which Amina sells her book is ₹$233.75$.

9. Find the amount to be paid at the end of 3 years in each case:

(a) Principal = ₹1,200 at $12\% $ p.a. 

Ans: The principal $\left( P \right) = $₹1,200, the rate $\left( R \right) = 12\% {\text{ p}}{\text{.a}}$ and the time $\left( T \right) = 3{\text{ years}}$.

The formula to evaluate the Simple Interest is given by,

${\text{Simple Interest}} = \dfrac{{P \times R \times T}}{{100}}$

${\text{Simple Interest}} = \dfrac{{1200 \times 12 \times 3}}{{100}}$

${\text{Simple Interest}} = 432$

Thus, the simple interest is found to be ₹432.

Now, the amount is the addition of Principal and Simple Interest.

${\text{Amount}} = {\text{Principal}} + {\text{Simple Interest}}$

${\text{Amount}} = {\text{1200}} + {\text{432}}$

${\text{Amount}} = Rs.1,632$

Therefore, the amount is calculated to be ₹1,632.

(b) Principal = ₹7,500 at $5\% $ p.a.

Ans: It is given that the principal $\left( P \right) = $₹7,500, the rate $\left( R \right) = 5\% {\text{ p}}{\text{.a}}$ and the time $\left( T \right) = 3{\text{ years}}$.

The formula to evaluate the Simple Interest is given by,

${\text{Simple Interest}} = \dfrac{{P \times R \times T}}{{100}}$

${\text{Simple Interest}} = \dfrac{{7500 \times 5 \times 3}}{{100}}$

${\text{Simple Interest}} = Rs.1,125$

Thus, the simple interest is found to be ₹1,125.

Now, the amount is the addition of Principal and Simple Interest.

${\text{Amount}} = {\text{Principal}} + {\text{Simple Interest}}$

${\text{Amount}} = 7500 + 1125$

${\text{Amount}} = Rs.8,625$

Therefore, the amount is calculated to be ₹ 8,625.

10. What rate gives ₹280 as interest on a sum of ₹56,000 in 2 years?

Ans: It is given that the principal $\left( P \right) = $₹56,000, the simple interest $\left( {{\text{S}}{\text{.I}}} \right) = $₹280, the time $\left( T \right) = 2{\text{ years}}$.

The simple interest is formulated as follows,

${\text{Simple Interest}} = \dfrac{{{\text{P}} \times {\text{R}} \times {\text{T}}}}{{100}}$

Substitute 280 for the Simple interest, 56000 for $P$ and 2 for $T$

${\text{280}} = \dfrac{{56000 \times {\text{R}} \times 2}}{{100}}$

${\text{R}} = \dfrac{{280 \times 100}}{{56000 \times 2}}$

${\text{R}} = 0.25\% $

Therefore, the rate of interest that gives ₹280 as interest on a sum of ₹56,000 in 2 years is $0.25\% $.

11. If Meena gives an interest of ₹45 for one year at $9\% $ rate p.a. What is the sum she has borrowed?

Ans: It is given that Meena gives an interest of ₹45 for a year and the rate of interest is $9\% $ p.a.

The simple interest is formulated as follows,

${\text{Simple Interest}} = \dfrac{{{\text{P}} \times {\text{R}} \times {\text{T}}}}{{100}}$

$45 = \dfrac{{{\text{P}} \times {\text{9}} \times {\text{1}}}}{{100}}$

${\text{P}} = \dfrac{{45 \times 100}}{{9 \times 1}}$

${\text{P}} = 500$

Therefore, the amount that is borrowed by her is found to be ₹500.

Conclusion

NCERT Solutions for Class 7 Maths Chapter 7 Exercise 7.2 – Comparing Quantities by Vedantu offers a thorough understanding of essential financial concepts. This exercise focuses on practical applications such as calculating profit, loss, and simple interest, which are important for grasping the fundamentals of financial mathematics.


Students should pay special attention to understanding the formulas used for these calculations and practice solving a variety of problems in class 7 math 7.2 to reinforce their learning. Key areas to focus on include accurately determining percentages for profit and loss, as well as computing simple interest over multiple years. By mastering these concepts, students will confidently handle real-life financial calculations and be ready for advanced mathematical topics.


Class 7 Maths Chapter 7: Exercises Breakdown

Exercises

Number of Questions

Exercise 7.1

10 Questions & Solutions



CBSE Class 7 Maths Chapter 7 Other Study Materials



Chapter-Specific NCERT Solutions for Class 7 Maths

Given below are the chapter-wise NCERT Solutions for Class 7 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.




Important Related Links for NCERT Class 7 Maths

Access these essential links for NCERT Class 7 Maths, offering comprehensive solutions, study guides, and additional resources to help students master language concepts and excel in their exams.


WhatsApp Banner

FAQs on NCERT Solutions For Class 7 Maths Chapter 7 Comparing Quantities Exercise 7.2 - 2025-26

1. How do the NCERT Solutions for Class 7 Maths Chapter 7 help in preparing for exams?

The NCERT Solutions for Class 7 Maths Chapter 7 provide detailed, step-by-step methods for every problem, aligning with the CBSE 2025-26 marking scheme. By practising with these solutions, you learn the correct way to present answers, understand how to apply formulas for concepts like profit/loss percentage and simple interest, and build confidence to tackle any question from this chapter in your exams.

2. What are the main topics covered in the NCERT Solutions for Class 7 Maths Chapter 7, 'Comparing Quantities'?

The NCERT Solutions for Chapter 7 comprehensively cover key mathematical concepts as per the latest syllabus. The main topics include:

  • Converting fractional numbers to percentages and vice-versa.
  • Calculating profit and loss.
  • Finding the profit percentage and loss percentage.
  • Solving problems related to Simple Interest (SI), including calculating interest, principal, rate, and time.

3. How do you calculate profit and loss for problems in NCERT Class 7 Maths Chapter 7?

In Chapter 7, the method to calculate profit and loss is straightforward:

  • Profit is calculated when the Selling Price (SP) is greater than the Cost Price (CP). The formula is: Profit = SP - CP.
  • Loss is incurred when the Selling Price (SP) is less than the Cost Price (CP). The formula is: Loss = CP - SP.
The NCERT Solutions clearly demonstrate this in every relevant problem.

4. What is the correct formula to find the profit percentage as used in the NCERT Solutions for Exercise 7.2?

The NCERT Solutions for Exercise 7.2 use a specific formula to calculate the profit percentage. The correct method is to first find the profit and then divide it by the Cost Price, multiplying the result by 100. The formula is: Profit % = (Profit / Cost Price) × 100. It is crucial to use the Cost Price as the base for this calculation.

5. How is the loss percentage calculated in the step-by-step solutions for Class 7 Maths Chapter 7?

To find the loss percentage, the NCERT Solutions guide you to first calculate the loss (Cost Price - Selling Price). This value is then used in the formula: Loss % = (Loss / Cost Price) × 100. Similar to profit percentage, the calculation is always based on the original Cost Price (CP).

6. What formula for Simple Interest (SI) is explained in the NCERT Solutions for Chapter 7?

The NCERT Solutions for Class 7 Maths Chapter 7 explain the formula for calculating Simple Interest in a clear, step-by-step manner. The formula is: Simple Interest (SI) = (Principal × Rate × Time) / 100. Here, Principal (P) is the initial amount, Rate (R) is the interest rate per annum, and Time (T) is the duration in years.

7. Why is it important to show every step when solving profit and loss problems as per the NCERT Solutions?

Showing every step, as demonstrated in the NCERT Solutions, is crucial for two main reasons. First, it helps break down the problem into manageable parts—calculating profit/loss first, then finding the percentage. Second, in exams following the CBSE pattern, marks are often allocated for each step. Writing the formula, substituting values correctly, and showing the final calculation ensures you get full marks, even if you make a minor error at the end.

8. In Chapter 7, why is the Cost Price (CP) always used as the base for calculating both profit and loss percentages?

The NCERT solutions consistently use the Cost Price (CP) as the base because profit or loss is always determined relative to the original investment. The CP represents the 100% value or the initial amount spent. Calculating the percentage based on the Selling Price (SP) would be incorrect as the SP already includes the profit or loss, leading to a misleading percentage value.

9. What is a common mistake students make when solving Simple Interest problems where the time is given in months?

A frequent error is using the number of months directly in the Simple Interest formula (P × R × T / 100). The NCERT Solutions implicitly teach that the 'T' (Time) in the formula must always be in years. To solve correctly, you must first convert the months into years by dividing by 12. For example, 6 months should be written as 6/12 or 0.5 years before applying the formula.

10. How do the NCERT Solutions for Chapter 7 help distinguish between 'increase in value' and 'percentage increase'?

The solutions for this chapter are structured to build conceptual clarity. They first guide you to calculate the 'increase in value' (the absolute difference between the new and original values). Then, they show how to convert this absolute increase into a 'percentage increase' by dividing it by the original value and multiplying by 100. This step-by-step approach prevents confusion and reinforces that a percentage is always a relative comparison to a base value.