Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# NCERT Solutions for Class 11 Maths Chapter 8 - In Hindi

Last updated date: 12th Jul 2024
Total views: 492.9k
Views today: 5.92k

## NCERT Solutions for Class 11 Maths Chapter 8 Binomial Theorem in Hindi PDF Download

Download the Class 11 Maths NCERT Solutions in Hindi medium and English medium as well offered by the leading e-learning platform Vedantu. If you are a student of Class 11, you have reached the right platform. The NCERT Solutions for Class 11 Maths in Hindi provided by us are designed in a simple, straightforward language, which are easy to memorise. You will also be able to download the PDF file for NCERT Solutions for Class 11 Maths in Hindi from our website at absolutely free of cost.

NCERT, which stands for The National Council of Educational Research and Training, is responsible for designing and publishing textbooks for all the classes and subjects. NCERT textbooks covered all the topics and are applicable to the Central Board of Secondary Education (CBSE) and various state boards.

We, at Vedantu, offer free NCERT Solutions in English medium and Hindi medium for all the classes as well. Created by subject matter experts, these NCERT Solutions in Hindi are very helpful to the students of all classes.

Competitive Exams after 12th Science

## Access NCERT Solutions for Mathematics Chapter ८:द्विपद प्रमेय

### 1 से 5 तक प्रत्येक व्यंजक का प्रसार कीजिए।

1. $\mathbf{(1-2 x)^{5}}$

उत्तर: $(1-2 x)^{5}$

$={ }^{5} C_{0}(1)^{5}-{ }^{5} C_{1}(1)^{4}(2 x)+{ }^{5} C_{2}(1)^{3}(2 x)^{2}-{ }^{5} C_{3}(1)^{2}(2 x)^{3}+{ }^{5} C_{4}(1)(2 x)^{4}-{ }^{5} C_{5}(2 x)^{5}$

$=1-5(2 x)+10\left(4 x^{2}\right)-10\left(8 x^{3}\right)+5\left(16 x^{4}\right)-32 x^{5}$

$=1-10 x+40 x^{2}-80 x^{3}+80 x^{4}-32 x^{5}$

2. $\left(\dfrac{2}{x}-\dfrac{x}{2}\right)^{5}$

उत्तर : $\left(\dfrac{2}{x}-\dfrac{x}{2}\right)^{5}$

$=^{5} C_{0}\left(\dfrac{2}{x}\right)^{5}-{ }^{5} C_{1}\left(\dfrac{2}{x}\right)^{4}\left(\dfrac{x}{2}\right)+{ }^{5} C_{2}\left(\dfrac{2}{x}\right)^{3}\left(\dfrac{x}{2}\right)^{2}-{ }^{5} C_{3}\left(\dfrac{2}{x}\right)^{2}\left(\dfrac{x}{2}\right)^{3}+{ }^{5} C_{4}\left(\dfrac{2}{x}\right)\left(\dfrac{x}{2}\right)^{4}-{ }^{5} C_{5}\left(\dfrac{x}{2}\right)^{5}$

$=\dfrac{32}{x^{5}}-5\left(\dfrac{16}{x^{4}}\right)\left(\dfrac{x}{2}\right)+10\left(\dfrac{8}{x^{3}}\right)\left(\dfrac{x^{2}}{4}\right)-10\left(\dfrac{4}{x^{2}}\right)\left(\dfrac{x^{3}}{8}\right)+5\left(\dfrac{2}{x}\right)\left(\dfrac{x^{4}}{16}\right)-\dfrac{x^{5}}{32}$

$=\dfrac{32}{x^{5}}-\dfrac{40}{x^{3}}+\dfrac{20}{x}-5 x+\dfrac{5}{8} x^{3}-\dfrac{x^{5}}{32}$

3. $\mathbf{(2 x-3)^{6}}$

उत्तर : $(2 x-3)^{6}$

$={ }^{6} C_{0}(2 x)^{6}-{ }^{6} C_{1}(2 x)^{5}(3)+{ }^{6} C_{2}(2 x)^{4}(3)^{2}-{ }^{6} C_{3}(2 x)^{3}(3)^{3}+{ }^{6} C_{4}(2 x)^{2}(3)^{4}-{ }^{6} C_{5}(2 x)(3)^{5}+{ }^{6} C_{6}(3)^{6}$

$=64 x^{6}-6\left(32 x^{5}\right)(3)+15\left(16 x^{4}\right)(9)-20\left(8 x^{3}\right)(27)+15\left(4 x^{2}\right)(81)-6(2 x)(243)+729$

$=64 x^{6}-576 x^{5}+2160 x^{4}-4230 x^{3}+4860 x^{2}-2916 x+729$

4. $\mathbf{\left(\dfrac{x}{3}+\dfrac{1}{x}\right)^{5}}$

उत्तर : $\left(\dfrac{x}{3}+\dfrac{1}{x}\right)^{5}$

$=C_{0}\left(\dfrac{x}{3}\right)^{5}+{ }^{5} C_{1}\left(\dfrac{x}{3}\right)^{4}\left(\dfrac{1}{x}\right)+{ }^{5} C_{2}\left(\dfrac{x}{3}\right)^{3}\left(\dfrac{1}{x}\right)^{2}+{ }^{5} C_{3}\left(\dfrac{x}{3}\right)^{2}\left(\dfrac{1}{x}\right)^{3}+n^{5} C_{4}\left(\dfrac{x}{3}\right)\left(\dfrac{1}{x}\right)^{4}+{ }^{5} C_{5}\left(\dfrac{1}{x}\right)^{5}$

$=\dfrac{x^{5}}{243}+5\left(\dfrac{x^{4}}{81}\right)\left(\dfrac{1}{x}\right)+10\left(\dfrac{x^{3}}{27}\right)\left(\dfrac{1}{x^{2}}\right)+10\left(\dfrac{x^{2}}{9}\right)\left(\dfrac{1}{x^{3}}\right)+5\left(\dfrac{x}{3}\right)\left(\dfrac{1}{x^{4}}\right)+\dfrac{1}{x^{5}}$

$=\dfrac{x^{5}}{243}+\dfrac{5 x^{2}}{81}+\dfrac{10}{27}+\dfrac{10}{9 x}+\dfrac{5}{3 x^{3}}+\dfrac{1}{x^{5}}$

5. $\mathbf{\left(x+\dfrac{1}{x}\right)^{6}}$

उत्तर : $\left(x+\dfrac{1}{x}\right)^{6}$

$={ }^{6} C_{0}(x)^{6}+{ }^{6} C_{1}(x)^{5}\left(\dfrac{1}{x}\right)+{ }^{6} C_{2}(x)^{4}\left(\dfrac{1}{x}\right)^{2}+{ }^{6} C_{3}(x)^{3}\left(\dfrac{1}{x}\right)^{3}+n^{6} C_{4}(x)^{2}\left(\dfrac{1}{x}\right)^{4}+{ }^{6} C_{5}(x)\left(\dfrac{1}{x}\right)^{5}+{ }^{6} C_{6}\left(\dfrac{1}{x}\right)^{6}$

$=x^{6}+6(x)^{5}\left(\dfrac{1}{x}\right)+15(x)^{4}\left(\dfrac{1}{x^{2}}\right)+20(x)^{3}\left(\dfrac{1}{x^{3}}\right)+15(x)^{2}\left(\dfrac{1}{x^{4}}\right)+6(x)\left(\dfrac{1}{x^{5}}\right)+\dfrac{1}{x^{6}}$

$=x^{6}+6 x^{4}+15 x^{2}+20+\dfrac{15}{x^{2}}+\dfrac{6}{x^{4}}+\dfrac{1}{x^{6}}$

### द्विपद प्रमेय का प्रयोग करके निम्रलिखित का मान ज्ञात कीजिए।

6. $\mathbf{(96)^{3}}$

उत्तर : $(96)^{3}$

$=(100-4)^{3}$

$=^{3} C_{0}(100)^{3}-{ }^{3} C_{1}(100)^{2}(4)+{ }^{3} C_{2}(100)(4)^{23} C_{3}(4)^{3}$

$=(100)^{3}-3(100)^{2}(4)+3(100)(4)^{2}-(4)^{3}$

$=1000000-120000+4800-64$

$=884736$

7. $\mathbf{(102)^{5}}$

उत्तर : $(102)^{5}$

$=(100+2)^{5}$

$=^{5} C_{0}(100)^{5}+{ }^{5} C_{1}(100)^{4}(2)+{ }^{5} C_{2}(100)^{3}(2)^{2}+{ }^{5} C_{3}(100)^{2}(2)^{3}+{ }^{5} C_{4}(100)(2)^{4}+{ }^{5} C_{5}(2)^{5}$

$=(100)^{5}+5(100)^{4}(2)+10(100)^{3}(2)^{2}+10(100)^{2}(2)^{3}+5(100)(2)^{4}+(2)^{5}$

$=10000000000+1000000000+40000000+800000+8000+32$

$=11040808032$

8. $\mathbf{(101)^{4}}$

उत्तर :  $(101)^{4}$

$=(100+1)^{4}$

$={ }^{4} C_{0}(100)^{4}+{ }^{4} C_{1}(100)^{3}(1)+{ }^{4} C_{2}(100)^{2}(1)^{2}+{ }^{4} C_{3}(100)(1)^{3}+{ }^{4} C_{4}(1)^{4}$

$=(100)^{4}+4(100)^{3}+6(100)^{2}+4(100)+(1)^{4}$

$=100000000+4000000+60000+400+1$

$=104060401$

9. $\mathbf{(99)^{5}}$

उत्तर : $(99)^{5}$

$=(100-1)^{5}$

$={ }^{5} C_{0}(100)^{5}-{ }^{5} C_{1}(100)^{4}(1)+{ }^{5} C_{2}(100)^{3}(1)^{2}-{ }^{5} C_{3}(100)^{2}(1)^{3}+{ }^{5} C_{4}(100)(1)^{4}-{ }^{5} C_{5}(1)^{5}$

$=(100)^{5}-5(100)^{4}+10(100)^{3}-10(100)^{2}+5(100)-1$

$=10000000000-500000000+10000000-100000+500-1$

$=10010000500-500100001$

=9509900499

10. द्विपद प्रमेय का प्रयोग करते हुए बताइए कौन-सी संख्या बड़ी है $(1.1)^{10000}$ या 1000 ।

उत्तर : $(1.1)^{10000}$

$=(1+0.1)^{1000}$

$=1^{10000}+{ }^{10000} C_{1}(1)^{9999}(0.1)^{1}$

$=1+10000(0.1)+\ldots \ldots$

$=1001+\ldots$ .

स्पष्ट है कि, $(1.1)^{10000}$ संख्या 1000 से बड़ी है।

11: $\mathbf{(a+b)^{4}-(a-b)^{4}}$ का विस्तार कीजिए। इसका प्रयोग करके $\mathbf{(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}}$ का मान ज्ञात कीजिए।

उत्तर : $(a+b)^{4}-(a-b)^{4}$

$(a+b)^{4}={ }^{4} C_{0}(a)^{4}+{ }^{4} C_{1}(a)^{3}(b)+{ }^{4} C_{2}(a)^{2}(b)^{2}+{ }^{4} C_{3}(a)(b)^{3}+{ }^{4} C_{4}(b)^{4}$

$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$

$(a-b)^{4}={ }^{4} C_{0}(a)^{4}-{ }^{4} C_{1}(a)^{3}(b)+{ }^{4} C_{2}(a)^{2}(b)^{2}-{ }^{4} C_{3}(a)(b)^{3}+{ }^{4} C_{4}(b)^{4}$

$(a-b)^{4}=a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}$

$(a+b)^{4}-(a-b)^{4}=2\left(4 a^{3} b+4 a b^{3}\right)$

$=8 a b\left(a^{2}+b^{2}\right)$

$a=\sqrt{3} b=\sqrt{2}$

$(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}$

$=8(\sqrt{3})(\sqrt{2})\left((\sqrt{3})^{2}+(\sqrt{2})^{2}\right)$

$=8(\sqrt{6})(3+2)$

$=8(5)(\sqrt{6})$

$=40 \sqrt{6}$

12: $\mathbf{(x+1)^{6}+(x-1)^{6}}$ का मान ज्ञात कीजिए । इसका प्रयोग करके या अन्यथा $\mathbf{(\sqrt{2}+1)^{6}-(\sqrt{2}-1)^{6}}$ का मान ज्ञात कीजिए।

उत्तर : $(x+1)^{6}+(x-1)^{6}(x+1)^{6}$

$={ }^{6} C_{0}(x)^{6}+{ }^{6} C_{1}(x)^{5}(1)+{ }^{6} C_{2}(x)^{4}(1)^{2}+{ }^{6} C_{3}(x)^{3}(1)^{3}+{ }^{6} C_{4}(x)^{2}(1)^{4}+{ }^{6} C_{5}(x)(1)^{5}+{ }^{6} C_{6}(1)^{6}(x+1)^{6}$

$=x^{6}+6 x^{5}+15 x^{4}+20 x^{3}+15 x^{2}+6 x+1(x-1)^{6}$

$={ }^{6} C_{0}(x)^{6}-{ }^{6} C_{1}(x)^{5}(1)+{ }^{6} C_{2}(x)^{4}(1)^{2}-{ }^{6} C_{3}(x)^{3}(1)^{3}+{ }^{6} C_{4}(x)^{2}(1)^{4}-{ }^{6} C_{5}(x)(1)^{5}+{ }^{6} C_{6}(1)^{6}(x-1)^{6}$

$=x^{6}-6 x^{5}+15 x^{4}-20 x^{3}+15 x^{2}-6 x+1(x+1)^{6}+(x-1)^{6}$

$=2\left(x^{6}+15 x^{4}+15 x^{2}+1\right) x$

$=\sqrt{2},(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$

$=2\left[(\sqrt{2})^{6}+15(\sqrt{2})^{4}+15(\sqrt{2})^{2}+1\right]$

$=2[8+15 \times 4+15 \times 2+1]$

$=2[8+60+30+1]$

$=2 \times 99$

=198

13: दिखाइए कि $\mathbf{9^{(n+1)}-8 n-9,64}$ से विभाज्य है जहाँ $n$ एक धान पूर्णांक है।

उत्तर: $(1+x)^{n+1}$

$=1+{ }^{n+1} C_{1} x+{ }^{n+1} C_{2} x^{2}+{ }^{n+1} C_{3} x^{3}+\ldots x$

$=8,9^{n+1}=1+(n+1) 8+{ }^{n+1} C_{2}(64)+{ }^{n+1} C_{3}(8)^{3}+\ldots .$

$=8 n+9+{ }^{n+1} C_{2}(64)+{ }^{n+1} C_{3}(8)^{3}+\ldots$

$9^{n+1}-8 n-9=64\left({ }^{n+1} C_{2}+{ }^{\mathrm{n}+1} C_{3}(8)+\ldots \ldots\right)$

अत: $9^{n+1}-8 n-9$, संख्या 64 से विभाजित है।

14: सिद्ध कीजिए कि $\mathbf{\sum_{r=0}^{n} 3^{r^{n}} C_{r}=4^{n}}$

उत्तर : $\sum_{r=0}^{n} 3^{r^{n}} C_{r}$

$=(3)^{0 n} C_{0}+(3)^{\ln } C_{1}+(3)^{2 n} C_{2}+\ldots \ldots+(3)^{\mathrm{m}} C_{n}$

$=(1+3)^{n}$

$=4^{n}$

### प्रश्नावली $8.2$

1. $(x+3)^{8}$ में $x^{5}$ का गुणांक ज्ञात कीजिए।

उत्तर : $(x+3)^{8}$ के द्विपदीय विस्तार है ${ }_{r}^{8} C x^{(8-r)} 3^{r}$, इसलिये $x^{5}=x^{8-r}$

दोनों पक्षों को बराबर करना, $5=8-r$

$\therefore \mathrm{r}=3$

$x^{5}$ का गुणांक है ${ }_{r}^{8} C .3^{r}={ }_{3}^{8} C .3^{3}=\dfrac{8 \times 7 \times 6}{1 \times 2 \times e} \times 27$

$=56 \times 27$

$=1512$

2. $(a-2 b)^{12}$ में $a^{5} b^{7}$ का गुणांक ज्ञात कीजिए।

उत्तर: $(a-2 b)^{12}$ के द्विपदीय विस्तार है ${ }_{r}^{2} C a^{12-r}(-2 b)^{r}$

$={ }_{r}^{12} C a^{12-r}(-1)^{r} 2^{r} b^{r}$

इसलिये $b^{7}=b^{r}$

$\therefore r=7$ $(\therefore r=7$ रखने पूर $)$ $={ }_{7}^{12} C a^{12-7}(-1)^{7} 2^{7} b^{7}$

$=a^{5} b^{712} C(-1)^{7} 2^{7}$

$a^{5} b^{7}$ का गुणांक है, ${ }_{7}^{12} C(-1)^{7} 2^{7}=-\dfrac{12 \times 11 \times 10 \times 9 \times 8}{1 \times 2 \times 3 \times 4 \times 5} \times 128$ $=-101376$

3. $\mathbf{\left(x^{2}-y\right)^{6}}$ के द्विपद विस्तार में सामान्य शब्द लिखें|

उत्तर: $\left(x^{2}-y\right)^{6}$ के द्विपदीय विस्तार है ${ }_{r}^{6} C\left(x^{2}\right)^{6-r}(-y)^{r}$

$={ }_{r}^{6} C x^{12-2 r}(-1)^{r}(y)^{r}$

4. $\mathbf{\left(x^{2}-x y\right)^{12}}$ के द्विपदीय विस्तार में सामान्य शब्द लिखें|

उत्तर: $\left(x^{2}-x y\right)^{12}$ के द्विपदीय विस्तार है ${ }^{12} C\left(x^{2}\right)^{12-r}(-y x)^{r}$

$={ }_{r}^{12} C x^{24-2 r}(-1)^{r}(y)^{r}(x)^{r}$

$=^{12} C x^{24-r}(-1)^{r}(y)^{r}$

5. $\mathbf{(x-2 y)^{12}}$ का चौथा शब्द द्विपद विस्तार में लिखें|

उत्तर : $(x-2 y)^{12}$ का चौथा शब्द है

$=T_{3+1}={ }_{3}^{12} C x^{12-3}(-2 y)^{3}$

$=\dfrac{12 \times 11 \times 10}{1 \times 2 \times 3} x^{9}(-1)^{3} 2^{3} y^{3}$

$=-220 \times 8 \times x^{9} y^{3}$

$=-1760 x^{9} y^{3}$

6. $\mathbf{\left(9 x-\dfrac{1}{3 \sqrt{x}}\right)^{18}}$ के द्विपद विस्तार में 13 वां शब्द लिखें|

उत्तर : $\left(9 x-\dfrac{1}{3 \sqrt{x}}\right)^{18}$ का 13 वां शब्द है,

$T_{12+1}=_{12}^{18} C(9 x)^{18-12}\left(-\dfrac{1}{3 \sqrt{x}}\right)^{12}$

$={ }_{12}^{18} C 9^{6} x^{6} \dfrac{(-1)^{12}}{3^{12}(\sqrt{x})^{12}}$

$=\dfrac{18 \times 17 \times 16 \times 15 \times 14 \times 13}{1 \times 2 \times 3 \times 4 \times 5 \times 6} \times \dfrac{3^{12} \cdot x^{6}}{3^{12} \cdot x^{6}}$

=18564

7. $\left(3-\dfrac{x^{3}}{6}\right)^{7}$ के द्विपदीय विस्तार में मध्य अवधि का पता लगाएं।

उत्तर : $\left(3-\dfrac{x^{3}}{6}\right)^{7}$ में $7+1=8$ पद है

पहला मध्य पद, $T_{4}=T_{3+1}=\dfrac{8}{2}=4$ वां पद है,

${ }_{3}^{7} C 3^{7-3}\left(-\dfrac{x^{3}}{6}\right)^{3}$

$=\dfrac{7 \times 6 \times 5}{1 \times 2 \times 3} 3^{4}(-1)^{3} \dfrac{x^{9}}{6^{3}}$

$=-35 \dfrac{3^{4} x^{9}}{2^{3} 3^{3}}$

$=-\dfrac{35.3 \cdot x^{9}}{8}$

$=-\dfrac{105 x^{9}}{8}$

दूसरा मध्य पद, $T_{5}=T_{4+1}=(4+1)=5$ वां पद है,

${ }_{4}^{7} C 3^{7-4}\left(-\dfrac{x^{3}}{6}\right)^{4}$

$=\dfrac{7 \times 6 \times 5}{1 \times 2 \times 3} 3^{3}(-1)^{4} \dfrac{x^{12}}{6^{4}}$

$=\dfrac{35 \cdot x^{12}}{16 x 3}$

$=\dfrac{35}{48} x^{12}$

8. $\mathbf{\left(\dfrac{x}{3}+9 y\right)^{10}}$ के द्विपदीय विस्तार में मध्य अवधि का पता लगाएं।

उत्तर : $\left(\dfrac{x}{3}+9 y\right)^{10}$ में $10+1=11$ पद है

मध्य पद $=\dfrac{11+1}{2}=6$ वां पद है,

$={ }_{5}^{0} C\left(\dfrac{x}{3}\right)^{5}(9 y)^{5}$

$=\dfrac{10 \times 9 \times 8 \times 7 \times 6}{1 \times 2 \times 3 \times 4 \times 5} \times \dfrac{x^{5}}{3^{5}} 9^{5} y^{5}$

$=252 \times \dfrac{3^{10}}{3^{5}} x^{5} y^{5}$

$=252 \times 243 x^{5} y^{5}$

$=61236 x^{5} y^{5}$

9. $\mathbf{(1+a)^{m+n}}$ के विस्तार में, सिद्ध कीजिए कि $a^{m}$ और $a^{n}$ के गुणांक बराबर हैं।

उत्तर : $(1+a)^{m+n}$ का सामान्य विस्तार

$={ }^{m+n}{ }_{r} C l^{m+n-r} x^{r}={ }^{m+n} r C x^{r}$

इसलिये

$T_{m+1}={ }^{m+n}{ }_{m} C x^{m}, a^{m}$ का गुणांक है $=\dfrac{m+n}{m} C=\dfrac{(m+n) !}{m ! n !}$

$T_{n+1}={ }^{m+n}{ }_{n} C x^{n}, a^{n}$ का गुणांक है $=^{m+n} n C=\dfrac{(m+n) !}{m ! n !}$

अत: $a^{m}$ और $a^{n}$ के गुणांक बराबर हैं।

10. $(x+1)^{n}$ के प्रसार में $(r-1)$ वां, $r$ वां और $(r+1)$ वे पदों के गुणांक में $1: 3: 5$ का अनुपात हो तोह $n$ और $r$ के मान ज्ञात करें।

$T_{r+1}={ }_{r}^{n} C x^{n-r}$

उत्तर : $(x+1)^{n}$ का सामान्य विस्तार ${ }_{r}^{n} C x^{(n-r)} 1=_{r}^{n} C x^{(n-r)}$

$T_{r-1}={ }_{r-2}^{n} C x^{n-r+2}$

$(r-1)$ th का गुणांक है $r={ }^{n} C T_{r-1}=r-2^{n} C x^{n-r+2} \ldots(i)$

$r$ वां का गुणांक है, $r_{r-2}^{n} C T_{r}={ }_{r-1}^{n} C x^{n-r+1} \ldots(ii)$ $(r+1)$ का गुणांक है, $r_{r-1}^{n} C$...(iii)

$(i)$ और $(ii)$ से:

$\dfrac{r-2^{n} C}{r^{\prime}-1 C}=\dfrac{1}{3}$

$\dfrac{n !}{\dfrac{(r-2) !(n-r+2) !}{n !}}{\dfrac{1}{3}}$

${\dfrac{(r-1) !(n-r+1) !}{}}{(r-2) !(n-r+2)(n-r+1) !}=\dfrac{1}{3}$

$(ii)$ और $(iii)$ से

$\dfrac{r-1}{n-r+2}=\dfrac{1}{3}$

$\Rightarrow>3 r-3=n-r+2$

$\Rightarrow n=4 r-5 \ldots(i v)$

$(iv)$ और $(v)$ से

$8 r=3(4 r-5)+3$

$8 r=12 r-5+3$

$r=3$

$\therefore n=4 \times 3-5=7$

11. सिद्ध कीजिये कि $(1+x)^{2} n$ के प्रसार में $x^{n}$ का गुणांक $(1+x)^{(2 n-1)}$ के प्रसार में $x^{n}$ का गुणांक का दोगुना है।

उत्तर : $(1+x)^{2} n$ लिखा जा सकता है ${ }_{r}^{2 n} C x^{r}$

$T_{n+1}={ }_{n}^{2 n} C x^{n}=\dfrac{(2 n) !}{n ! n !}=\dfrac{2 n(2 n-1) !}{n(n-1) n !}=2 \cdot \dfrac{(2 n-1) !}{(n-1) ! n !} \ldots(i)$

$(1+\mathrm{x})^{2 n-1}$ लिखा जा सकता है ${ }^{2 n-1}{ }_{r} C x^{r}$

$T_{n+1}=^{2 n-1} n C x^{n}=\dfrac{(2 n-1) !}{n !(n-1) !}=\dfrac{(2 n-1) !}{(n-1) ! n !} \ldots(ii)$

$(i)$ और $(ii)$ से

$x^{n}$ का गुणांक $(1+x)^{2} n$ के प्रसार में $(1+x)^{(2 n-1)}$ के प्रसार का दोगुना है।

12. $m$ का सकारात्मक मान ज्ञात कीजिए जिसके लिए $(1+x)^{m}$ के विस्तार में $x^{2}$ का गुणांक 6 है।

उत्तर : $(1+x)^{m}$ लिखा जा सकता है ${ }_{r}^{m} C x^{r}$

$T_{3}=T_{2+1}={ }_{2}^{m} C x^{2}$

इसलिये $x^{2}$ का गुणांक है ${ }_{2} C=\dfrac{m !}{2 !(m-2) !}=\dfrac{m(m-1)}{2}$

प्रश्र के अनुसार $\dfrac{m(m-1)}{2}=6$

$m^{2}-m=12$

$m^{2}-m-12=0$

$m^{2}-4 m+3 m-12=0$

$(m-4)(m+3)=0$

m=-3,4

चंकि $m$ एक धनात्मक पूर्णांक है, इसलिए $m \neq-3$

इसलिए $m=4$

### प्रश्नावली $A 8$

1. यदि $(a+b)^{n}$ के प्रसार में प्रथम तौन पद क्रमश: 729,7290 तथा 30375 हों तो $a, b$ और $n$ ज्ञात कीजिए।

उत्तर : यह ज्ञात है कि $(r+1)$ टर्म, $\left(T_{r+1}\right),(a+b)^{n}$ के द्विपद विस्तार के द्वारा

$\mathrm{T}_{\mathrm{r}+1}={ }^{\mathrm{n}} \mathrm{C}_{r} \mathrm{a}^{\mathrm{n-t}} \mathrm{b}^{\mathrm{r}}$

पहले तीन पद क्रमशः 729,30375 और 7290 के रूप में दिए गए हैं। इसलिए हमने प्राप्त किया

$T_{2}={ }^{n} C_{2} a^{n-2} b^{2}=\dfrac{n(n-1)}{2} a^{n-2} b^{2}=30375 \ldots . .(3)$

(2) को (1) से विभाजित करके हमे प्राप्त हुआ

$\dfrac{n a^{n-1} b}{a^{n}}=\dfrac{7290}{729}$

$\Rightarrow \dfrac{n b}{a}=10 \ldots \ldots$

(3) को (2) से विभाजित करके हमे प्राप्त हुआ

$\Rightarrow \dfrac{n(n-1) a^{n-2} b^{2}}{2 n a^{n-1} b}=\dfrac{30375}{7290}$

$\Rightarrow \dfrac{n(n-1) b}{2 a}=\dfrac{30375}{7290}$

$\Rightarrow \dfrac{(n-1) b}{a}=\dfrac{30375 * 2}{7290}=\dfrac{25}{3}$

$\Rightarrow \dfrac{n b}{a}=\dfrac{b}{a}=\dfrac{23}{3}$

$\Rightarrow 10-\dfrac{b}{a}=\dfrac{25}{3}$

$\Rightarrow \dfrac{b}{a}=10-\dfrac{25}{3}=\dfrac{5}{3}$

(4) और (5) हमे प्राप्त हुआ

$\dfrac{n 5}{3}=10$

$\Rightarrow n=6$

$n=6$ को (1) में रखकर हमे प्राप्त हुआ $a^{6}$

$=739$ $\Rightarrow a=\sqrt[6]{729}=3$

2. यदि $(3+a x)^{9}$ के प्रसार में $x^{3}$ तथा के गुणांक समान हों, $a$ का मान ज्ञात कीजिए।

उत्तर : यह ज्ञात है कि $(\mathrm{r}+1)^{\operatorname{th}}$ पद, $\left(T_{r+1}\right),(a+b)^{n}$ के द्विपद विस्तार के द्वारा दिया जाता है

$T_{r+1}={ }^{n} C_{r} d^{-\tau} b^{\prime}$

यह मानते हुए कि $x^{2},(r+1)^{\hbar},(3+c x)^{9}$ के विस्तार में होता है, हम प्राप्त करते हैं

$\mathrm{T}_{t+1}={ }^{n} \mathrm{C}_{r}(3)^{2 r}(\mathrm{ax})^{r}={ }^{n} \mathrm{C}_{r}(3)^{-1-1}\left(\mathrm{a}^{\mathrm{T}} \mathrm{x}^{\prime}\right)$

$x^{2}$ और $\mathrm{T}_{\mathrm{r}+1}$ में हम $\mathrm{x}$ के सूचकांकों की तुलना करते हैं $\mathrm{r}=2$

इस प्रकार, $x^{2}$ का गुणांक है

${ }^{9} C_{2}(3)^{9-2} a^{2}=\dfrac{9 !}{2 ! 7 !}(3)^{7} a^{2}=36(3)^{7} a^{2}$

मान लें कि $(3+a x)^{9}$ के विस्तार में $x^{2},(k+1)^{\|}$ टर्म होता है, तो हम प्राप्त करते हैं

$T_{k+1}={ }^{n} C_{k}(3)^{9-k}(a x)^{k}={ }^{n} C_{k}(3)^{9-k}\left(d x^{\prime}\right)$

$x^{3}$ और $T_{k+1}$ में $x$ के सूचकांकों की तुलना में, हम $k=3$ प्राप्त करते हैं इस प्रकार, $x^{3}$ का गुणांक है

${ }^{9} C_{3}(3)^{n-3} a^{3}=\dfrac{9 !}{3 ! 6 !}(3)^{6} a^{3}=84(3)^{6} a^{3}$

यह दिया है कि $x^{2}$ और $x^{3}$ का गुणांक समान है

$84(3)^{6} a^{3}=36(3)^{7} a^{2}$

$\Rightarrow 84 a=36^{\prime} 3$

$\Rightarrow a=\dfrac{36^{*} 3}{84}=\dfrac{104}{84}$

$\Rightarrow a=\dfrac{9}{7}$

3. द्विपद प्रमेय का उपयोग करते हुए गुणनफल $(1+2 x)^{6}(1-x)^{7}$ में $\mathrm{x}^{5}$ का गुणांक ज्ञात कीजिए।

उत्तर : द्विपद प्रमेय का उपयोग करते हुए $(1+2 x)^{6}$ और $(1-x)^{7}$ अभिव्यक्ति का विस्तार किया जा सकता है:

$(1+2 x)^{6}={ }^{6} C_{0}+{ }^{6} C_{1} 2 x+{ }^{6} C_{2}(2 x)^{2}+{ }^{6} C_{3}(2 x)^{3}+{ }^{6} C_{4}(2 x)^{4}+{ }^{6} C_{5}(2 x)^{5}+{ }^{6} C_{6}(2 x)^{6}$

$\Rightarrow 1+6(2 x)+15(2 x)^{2}+20(2 x)^{3}+15(2 x)^{4}+6(2 x)^{5}+(2 x)^{6}$

$\Rightarrow 1+12 x^{2}+60 x^{2}+160 x^{2}+240 x^{2}+192 x^{2}+64 x^{2}$

$(1-x)^{7}=C_{0}-^{7} C_{1} x+^{7} C_{2}(x)^{2}-C_{3}(x)^{3}+^{7} C_{4}(x)^{4}-{ }^{7} C_{5}(x)^{5}+{ }^{7} C_{6}(x)^{6}-7 C_{7}(x)^{7}$

$\Rightarrow 1-7 x+21 x^{2}-35 x^{3}+35 x^{4}-21 x^{5}+7 x^{6}-x^{7}$

$\Rightarrow \therefore(1+2 x)^{6}(1-x)^{7}$

$\Rightarrow\left(1+12 x+60 x^{2}+160 x^{2}+240 x^{4}+192 x^{5}+64 x^{6}\right)\left(1-7 x+21 x^{2}-35 x^{3}+35 x^{4}-21 x^{5}+7 x^{6}-x^{7}\right)$

दो ब्रेकेट के पूर्ण गुणा को बाहर ले जाने की आवश्यकता नहीं है। केवल $x^{5}$ के टर्म, को शामिल करना आवश्यक है

$x^{5}$ वाले शब्द

$1\left(-21 x^{5}\right)+(12 x)\left(35 x^{4}\right)+\left(60 x^{2}\right)\left(-35 x^{3}\right)+\left(160 x^{3}\right)\left(21 x^{2}\right)+\left(240 x^{4}\right)(-7 x)+\left(192 x^{5}\right)(1)$

$=171 x^{5}$

इस प्रकार दिए गए उत्पाद में $x^{5}$ का गुणांक 171 है।

4. यदि $a$ और $b$ भित्न-भित्र पूर्णांक हों, तो सिद्ध कीजिए कि $\mathbf{\left(a^{n}-b^{n}\right)}$ का एक गुणनखंड $(a-b)$ है, जबकि $n$ एक धन पूर्णां है।

संकेत $a^{n}=(a-b+b)^{n}$ लिखकर प्रसार कीजिए।

उत्तर: यह साबित करने के लिए कि $(a-b)$ एक कारक है $\left(a^{n}-b^{n}\right)$, यह साबित करना होगा कि $a^{n}-b^{n}=k(a-b)$, जहाँ $k$ कुछ प्राकृतिक संख्या है।

$\Rightarrow \therefore a^{n}=(a-b+b)^{n}=[(a-b)+b]^{n}$

$\Rightarrow\mathrm{n}_{\mathrm{C}_{0}}(a-b)^{\mathrm{n}}+\mathrm{n}_{\mathrm{c},}(a-b)^{n-1}+\ldots \ldots \ldots .+\mathrm{n}_{\mathrm{C}_{-1}}(a-b) b^{k-1}+\mathrm{n}_{c} b^{n}$

$\Rightarrow(a-b)^{n}+n_{C_{1}}(a-b)^{n-1} b+\ldots \ldots+n_{C_{M}}(a-b) b^{n-1}+b^{n}$

$\Rightarrow a^{n}-b^{n}=(a-b)\left[(a-b)^{n-1}+\mathrm{n}_{c_{1}}(\mathrm{a}-\mathrm{b})^{n-2} \mathrm{~b}+\ldots \ldots \ldots+\mathrm{n}_{\mathrm{C}} \mathrm{b}^{\mathrm{n}-1}\right.$

$\Rightarrow d^{r}-b^{n}=k(a-b)$

जहाँ $\mathrm{k}=\left[(a-b)^{n-1}+\mathrm{n}_{c_{c}}(\mathrm{a}-\mathrm{b})^{\mathrm{n}-2} \mathrm{~b}+\ldots \ldots \ldots+\mathrm{n}_{c_{-1}} \mathrm{~b}^{\mathrm{n}-1}\right.$ एक प्राकृतिक संख्या है इससे पता चलता है कि $(a-b)$ एक कारक है $\left(a^{n}-b^{n}\right)$, जहां $n$ एक सकारात्मक पूर्णांक है।

5. $\mathbf{(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}}$ का मान ज्ञात कीजिए।

उत्तर : सबसे पहले, द्विपद प्रमेय का उपयोग करके अभिव्यक्ति $(a+b)^{6}-(a b)^{6}$ को सरल किया जाता है। यह किया जा सकता है

$(a+b)^{6}={ }^{6} C_{0} d^{6}+{ }^{6} C_{1} a^{i} b+{ }^{6} C_{2} a^{4}(b)^{2}+{ }^{6} C_{3} a^{3}(b)^{3}+{ }^{6} C_{4} a^{2}(b)^{4}+{ }^{6} C_{5} a^{1}(b)^{5}+{ }^{6} C_{6}(b)^{6}$

$\Rightarrow d^{6}+6 a^{\prime} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{5}$

$\Rightarrow a^{6}-6 a^{\prime} b+15 a^{4} b^{2}-20 a^{3} b^{3}+15 a^{2} b^{4}-6 a b^{5}+b^{5}(a-b)^{6}={ }^{6} C_{0} a^{6}-{ }^{6} C_{1} a^{i} b+{ }^{6} C_{2} a^{4}(b)^{2}$

$-{ }^{6} C_{3} a^{3}(b)^{3}+{ }^{6} C_{4} a^{2}(b)^{4}-{ }^{6} C_{5} d(b)^{5}+{ }^{6} C_{6}(b)^{6}$

$\Rightarrow(a+b)^{6}-(a-b)^{6}=2\left[6 a^{i} b+20 a^{3} b^{3}+6 a b^{5}\right]$

$a=\sqrt{3} ; b=\sqrt{2}$ हम प्राप्त करते हैं

$\Rightarrow(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}=2\left[6 \sqrt{3}^{5} \sqrt{2}+20 \sqrt{3} \sqrt{2}^{3}+6 \sqrt{3} \sqrt{2}^{5}\right]$

$\Rightarrow 2[54 \sqrt{6}+120 \sqrt{6}+24 \sqrt{6}]$

$\Rightarrow 2 \cdot 198 \sqrt{6}$

$\Rightarrow 396 \sqrt{6}$

6.$\mathbf{\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}}$ का मान ज्ञात कीजिए।

उत्तर : सबसे पहले, द्विपद प्रमेय का उपयोग करके अभिव्यक्ति $(x+y)^{4}-(x-y)^{4}$ को सरल किया जाता है। यह किया जा सकता है:

$(x+y)^{4}={ }^{4} C_{0} x^{4}+{ }^{4} C_{1} x^{3} y+{ }^{4} C_{2} x^{2}(y)^{2}+{ }^{4} C_{3} x^{1}(y)^{3}+{ }^{4} C_{4} x^{0}(y)^{4}$

$\Rightarrow x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}(x-y)^{4}={ }^{4} C_{0} x^{4}-{ }^{4} C_{1} x^{3} y+{ }^{4} C_{2} x^{2}(y)^{2}-{ }^{4} C_{3} x^{1}(y)^{3}+{ }^{4} C_{4} x^{0}(y)^{4}$

$\Rightarrow x^{4}-4 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4}(x+y)^{4}+(x-y)^{4}=2\left[x^{4}+6 x^{2} y^{2}+y^{4}\right]$

$x=a^{2} \quad y=\sqrt{a^{2}-1}$ हम प्राप्त करते हैं

$\Rightarrow\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}=2\left[\left(a^{2}\right)^{4}+6\left(a^{2}\right)^{2}\left(\sqrt{a^{2}-1}\right)^{2}+\left(\sqrt{a^{2}-1}\right)^{4}\right.$

$\Rightarrow 2\left[a^{8}+6 a^{4}\left(a^{2}-1\right)+\left(a^{2}-1\right)^{2}\right]$

$\Rightarrow 2\left[a^{8}+6 a^{6}-6 a^{4}+a^{4}-2 a^{2}+1\right]$

$\Rightarrow 2\left[a^{8}+6 a^{6}-5 a^{4}-2 a^{2}+1\right]$

$\Rightarrow\left[2 a^{8}+12 a^{6}-10 a^{4}-4 a^{2}+2\right]$

7. $(0.99)^{5}$ के प्रसार के पहले तीन पदों का प्रयोग करते हुए इसका निकटतम मान ज्ञात कीजिए।

उत्तर : $0.99=1-0.01$

$\Rightarrow \therefore(0.99)^{5}=(1-0.01)^{5}$

$\Rightarrow^{5} C_{0} 1^{5}-{ }^{5} C_{1} 1^{4}(0.01)+^{5} C_{2} 1^{3}(0.01)^{2}$

$\Rightarrow 1-5(0.01)+10(0.01)^{2}$

$\Rightarrow 1-0.05+0.001$

$\Rightarrow 1.001-0.05$

$\Rightarrow 0.951$

इस प्रकार $(0.99)^{s}$ का मान लगभग $0.951$ है।

8. यदि $\left(\sqrt[4]{2}+\dfrac{1}{\sqrt{3}}\right)^{n}$ के प्रसार में आरंभ से 5 वें और अंत से 5 वें पद का अनुपात $\sqrt{6}: 1$ हो तो $n$ ज्ञात कीजिए।

उत्तर : विस्तार

$(a+b)^{n}=^{n} C_{0} d^{2}+{ }^{n} C_{1} d^{(n-1)} b+{ }^{n} C_{2} d^{n-2)}(b)^{2}+{ }^{n} C_{3} d^{(n-3)}(b)^{3}++^{n} C_{(n-1)} a(b)^{(n-2)}+{ }^{n} C_{n} b^{n}$ में शुरुआत से पांचवां कार्यकाल $={ }^{n} C_{4} a^{-4} b^{4}$

अंत से पांचवां कार्यकाल $={ }^{n} C_{4} a^{4} b^{n-4}$

इसलिए यह स्पष्ट है कि $\left(\sqrt[4]{2}+\dfrac{1}{\sqrt{3}}\right)^{n}$ के विस्तार में शुरुआत से पांचवां शब्द है और अंत से पांचवां शब्द है,

$C_{n-4}(\sqrt[4]{2})^{4}\left(\dfrac{1}{\sqrt{3}}\right)^{n-4 n}$

$C_{4}(\sqrt[4]{2})^{n-4}\left(\dfrac{1}{\sqrt{3}}\right)^{4}=^{n} C_{4}$ $\dfrac{(\sqrt[4]{2})^{n}}{(\sqrt[4]{2})^{4}}-\dfrac{1}{3}$

$=\dfrac{n !}{6.4 !(n-4) !}(\sqrt[4]{2})^{\pi} \ldots \ldots . . .(1)$

${ }^{n} C_{n-4}(\sqrt[4]{2})^{4}\left(\dfrac{1}{\sqrt{3}}\right)^{n-4}={ }^{n} C_{4} \dfrac{(\sqrt[4]{3})^{n}}{(\sqrt[4]{3})^{4}}={ }^{n} C_{n-4} \dfrac{23}{(\sqrt[4]{3})^{4}}=$

$\dfrac{6 n !}{(n-4) ! 4 ! !} \cdot \dfrac{1}{(\sqrt[4]{3})^{n}}$

यह दिया जाता है कि पांचवें शब्द का प्रारंभ से अंत तक पांचवें शब्द का अनुपात है $\sqrt{6}: 1$ इसलिए, (1) और (2) से, हम प्राप्त करते हैं:

$\Rightarrow \dfrac{n !}{6.4 !(n-4) !}(\sqrt[4]{2})^{n}: \dfrac{6n!}{(n-4) ! 4 !} \cdot \dfrac{1}{(\sqrt[4]{3})^{n}}=\sqrt{6}: 1$

$\Rightarrow \dfrac{(\sqrt{2})^{n}}{6}: \dfrac{6}{(\sqrt[4]{3})^{n}}=\sqrt{6}: 1$

$\Rightarrow \dfrac{(\sqrt{4}{2})^{n}}{6} \times \dfrac{(\sqrt{3}{3})^{n}}{6}=\sqrt{6}$

$\Rightarrow(\sqrt[4]{6})^{n}=36 \sqrt{6}$

$\Rightarrow 6^{\dfrac{\pi}{4}}=6^{\dfrac{5}{2}}$

$\Rightarrow \dfrac{n}{4}=\dfrac{5}{2}$

$\Rightarrow n=\dfrac{4 x 5}{2}=10$

इस प्रकार, $n$ का मान 10 है।

9. $\left(1+\dfrac{x}{2}-\dfrac{2}{x}\right)^{4} \mathrm{x} \neq 0$ का द्विपद प्रमेय द्वारा प्रसार ज्ञात कीजिए।

उत्तर : $\left(1+\dfrac{x}{2}-\dfrac{2}{x}\right)^{4} \mathrm{x} \neq 0$

$\Rightarrow ^{n} C_{0}\left(1+\dfrac{x}{2}\right)^{4}\left(\dfrac{2}{x}\right)^{0}+{ }^{n} C_{1}\left(1+\dfrac{x}{2}\right)^{3}\left(\dfrac{2}{x}\right)^{1}+{ }^{1} C_{2}\left(1+\dfrac{x}{2}\right)^{2}\left(\dfrac{2}{x}\right)^{2}+{ }^{n} C_{3}\left(1+\dfrac{x}{2}\right)^{1}\left(\dfrac{2}{x}\right)^{3}+{ }^{n} C_{n}\left(1+\dfrac{x}{2}\right)^{0}\left(\dfrac{2}{x}\right)^{4}$

$\Rightarrow \left(1+\dfrac{x}{2}\right)^{4}-4\left(1+\dfrac{x}{2}\right)^{3}\left(\dfrac{2}{x}\right)+6\left(1+x+\dfrac{x^{2}}{4}\right)\left(\dfrac{4}{x^{2}}\right)-4\left(1+\dfrac{x}{2}\right)\left(\dfrac{8}{x^{3}}\right)+\dfrac{16}{x^{4}}$

$\Rightarrow \left(1+\dfrac{x}{2}\right)^{4}-\dfrac{8}{x}\left(1+\dfrac{x}{2}\right)^{3}+\dfrac{24}{x^{2}}+\dfrac{24}{x}+6-\dfrac{32}{x^{3}}-\dfrac{16}{x^{2}}+\dfrac{16}{x^{4}}$

$\Rightarrow \left(1+\dfrac{x}{2}\right)^{4}-\dfrac{8}{x}\left(1+\dfrac{x}{2}\right)^{3}+\dfrac{8}{x^{2}}+\dfrac{24}{x}+6-\dfrac{32}{x^{3}}+\dfrac{16}{x^{4}} \cdots \ldots \ldots(1)$

फिर से द्विपद प्रमेय का उपयोग करके हम प्राप्त करते हैं

$\left(1+\dfrac{x}{2}\right)^{4}={ }^{4} C_{0} 1^{4}+{ }^{4} C_{1} 1^{3}\left(\dfrac{x}{2}\right)+{ }^{4} C_{2} 1^{2}\left(\dfrac{x}{2}\right)^{2}+{ }^{4} C_{3} 1^{1}\left(\dfrac{x}{2}\right)^{3}+{ }^{4} C_{4}\left(\dfrac{x}{2}\right)^{4}$

$\Rightarrow 1+4 * \dfrac{x}{2}+6 * \dfrac{x^{2}}{4}+4 * \dfrac{x^{3}}{8}+\dfrac{x^{4}}{16}$

$\Rightarrow 1+2 x+\dfrac{3 x^{2}}{2}+\dfrac{x^{3}}{2}+\dfrac{x^{4}}{16} \ldots \ldots . . .(2)$

$\Rightarrow \left(1+\dfrac{x}{2}\right)^{3}={ }^{3} C_{0} 1^{3}+{ }^{3} C_{1} 1^{3}\left(\dfrac{x}{2}\right)+{ }^{3} C_{2} 1^{2}\left(\dfrac{x}{2}\right)^{2}+{ }^{3} C_{3} 1^{1}\left(\dfrac{x}{2}\right)^{3}$

$\Rightarrow 1+\dfrac{3 x}{2}+\dfrac{3 x^{2}}{4}+\dfrac{x^{3}}{8} \cdots \ldots . .(3)$

(1), (2) और (3) से हम प्राप्त करते हैं

$\Rightarrow \left(\left(1+\dfrac{x}{2}\right)-\dfrac{2}{x}\right)^{4}$

$\Rightarrow 1+2x+\dfrac{3x^{2}}{2}+\dfrac{x^{3}}{2}+\dfrac{x^{4}}{16}-\dfrac{8}{x}\left(1+\dfrac{3x}{2}+\dfrac{3x^{2}}{4}+\dfrac{x^{3}}{8}\right)+\dfrac{8}{x^{2}}+\dfrac{24}{x}+6-\dfrac{32}{x^{3}}+\dfrac{16}{x^{4}}$

$\Rightarrow 1+2x+\dfrac{3 x^{2}}{2}+\dfrac{x^{3}}{2}+\dfrac{x^{4}}{16}-\dfrac{8}{x}-12-6 x-x^{2}+\dfrac{8}{x^{2}}+\dfrac{24}{x}+6-\dfrac{32}{x^{3}}+\dfrac{16}{x^{4}}$

$\Rightarrow \dfrac{16}{x}+\dfrac{8}{x^{2}}-\dfrac{32}{x^{3}}+\dfrac{16}{x^{4}}-4 x+\dfrac{x^{2}}{2}+\dfrac{x^{3}}{2}+\dfrac{x^{4}}{16}-5$

10. $\left(3 \mathrm{x}^{2}-2 \mathrm{ax}+3 \mathrm{a}^{2}\right)^{3}$ का द्विपद प्रमेय से प्रसार ज्ञात कीजिए।

उत्तर : द्विपद प्रमेय का उपयोग करते हुए, दी गई अभिव्यक्ति $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ को $\left[\left(3 x^{2}-2 a x\right)+3 a^{2}\right]^{3}$ रूप में विस्तारित किया जा सकता है

$\Rightarrow^{3} C_{0}\left(3 x^{2}-2 c x\right)^{3}+{ }^{3} C_{1}\left(3 x^{2}-2 a x\right)^{2}\left(3 a^{2}\right)+{ }^{3} C_{2}\left(3 x^{2}-2 c x\right)^{1}\left(3 a^{2}\right)^{2}+{ }^{3} C_{3}\left(3 a^{2}\right)^{3}$

$\Rightarrow \left(3 x^{2}-2 c x\right)^{3}+3\left(9 x^{4}-12 c x^{3}+4 a^{2} x^{2}\right)\left(3 a^{2}\right)+3\left(3 x^{2}-2 a x\right)\left(3 a^{2}\right)+27 a^{6}$

$\Rightarrow \left(3 x^{2}-2 c x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+36 a^{4} x^{2}+81 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

$\Rightarrow \left(3 x^{2}-2 c x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

फिर से द्विपद प्रमेय का उपयोग करके हम प्राप्त करते हैं

$\Rightarrow ^{3} C_{0}\left(3 x^{2}\right)^{3}+{ }^{3} C_{1}\left(3 x^{2}\right)^{2}(2 a x)+{ }^{3} C_{2}\left(3 x^{2}\right)^{1}(2 c x)^{2}+{ }^{3} C_{3}(2 a x)^{3}$

$\Rightarrow 27 x^{6}-3\left(9 x^{4}\right)(2 c x)+3\left(3 x^{2}\right)\left(4 a^{2} x^{2}\right)-8 a^{3} x^{3}$

$\Rightarrow 27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}$

1 और 2 से हम प्राप्त करते हैं

$\left(3 x^{2}-2 c x+3 a^{2}\right)^{3}$

$\Rightarrow 27 x^{6}-54 a x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

$\Rightarrow 27 x^{6}-54 a x^{5}+117 a^{2} x^{4}-116 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6}$

### NCERT Solutions for Class 11 Maths Chapter 8 Binomial Theorem in Hindi

Chapter-wise NCERT Solutions are provided everywhere on the internet with an aim to help the students to gain a comprehensive understanding. Class 11 Maths Chapter 8 solution Hindi mediums are created by our in-house experts keeping the understanding ability of all types of candidates in mind. NCERT textbooks and solutions are built to give a strong foundation to every concept. These NCERT Solutions for Class 11 Maths Chapter 8 in Hindi ensure a smooth understanding of all the concepts including the advanced concepts covered in the textbook.