Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry Exercise 11.1 - 2025-26

ffImage
banner
widget title icon
Latest Updates

Maths Class 11 Chapter 11 Questions and Answers - Free PDF Download

In NCERT Solutions Class 11 Maths Chapter 11 Exercise 11 1, you’ll start your journey into three dimensional geometry! This chapter helps you see how to find and plot points in space, what planes and axes are, and even how to name the eight different 'octants' in 3D. The solutions give you stepwise help so even if you feel confused at first, you’ll get clear explanations for each question.


If you want a solid start to this topic, the downloadable PDF has easy steps so you can check your answers, revise fast, and clear up common doubts. You’ll also find it easier to handle exam questions and tricky problems. If you want, you can also check the full Class 11 Maths syllabus for a better overview.


With support from Vedantu, these NCERT Solutions make learning 3D geometry much simpler. Practising these will boost your confidence for both school tests and CBSE exams. For complete help across all topics, the Class 11 Maths NCERT Solutions are always there for you.


Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 11 Maths Chapter 11 - Introduction to Three Dimensional Geometry

Exercise 11.1

Refer to pages 1-3 for exercise 11.1 in the PDF

1. A point is on the x-axis. What are its y-coordinate and z-coordinates?

Ans: We know that, the coordinates of any point on the $x$-axis will be as $\left( {x,0,0} \right)$.

Thus, if a point is on the $x$-axis, then its $y$-coordinate will be $0$ and $z$-coordinate will be 0.

2. A point is in the XZ-plane. What can you say about its y-coordinate?

Ans: We know that, the coordinates of any point in the XZ-plane will be as $\left( {x,0,z} \right)$.

So, in the XZ- plane $y = 0$.

Thus, if a point is in the XZ- plane then the coordinate of $y$will always be 0.

Hence, its $y$-coordinate is 0.

3. Name the octants in which the following points lie:

$\left( {{\mathbf{1,2,3}}} \right)$

Ans: We have the following table,

Octant Coordinates

I

II

III

IV

V

VI

VII

VIII

$x$ 

+

-

-

+

+

-

-

+

$y$ 

+

+

-

-

+

+

-

-

$z$ 

+

+

+

+

-

-

-

-


From the above table, the point $\left( {1,2,3} \right)$ lies in the first octant.

$\left( {{\mathbf{4, - 2,3}}} \right)$

Ans: We have the following table,

Octant Coordinates

I

II

III

IV

V

VI

VII

VIII

$x$ 

+

-

-

+

+

-

-

+

$y$ 

+

+

-

-

+

+

-

-

$z$ 

+

+

+

+

-

-

-

-


From the above table, the point $\left( {4, - 2,3} \right)$ lies in octant IV.

$\left( {{\mathbf{4, - 2, - 5}}} \right)$

Ans: We have the following table,

Octant Coordinates

I

II

III

IV

V

VI

VII

VIII

$x$ 

+

-

-

+

+

-

-

+

$y$ 

+

+

-

-

+

+

-

-

$z$ 

+

+

+

+

-

-

-

-


From the above table, the point $\left( {4, - 2, - 5} \right)$ lies in octant VIII.

$\left( {{\mathbf{4,2, - 5}}} \right)$

Ans: We have the following table,

From the above table, the point $\left( {4,2, - 5} \right)$ lies in octant V.

$\left( {{\mathbf{ - 4,2, - 5}}} \right)$

Ans: We have the following table,

Octant Coordinates

I

II

III

IV

V

VI

VII

VIII

$x$ 

+

-

-

+

+

-

-

+

$y$ 

+

+

-

-

+

+

-

-

$z$ 

+

+

+

+

-

-

-

-


From the above table, the point $\left( { - 4,2, - 5} \right)$ lies in octant VI.

$\left( {{\mathbf{ - 4,2,5}}} \right)$

Ans: We have the following table,

Octant Coordinates

I

II

III

IV

V

VI

VII

VIII

$x$ 

+

-

-

+

+

-

-

+

$y$ 

+

+

-

-

+

+

-

-

$z$ 

+

+

+

+

-

-

-

-

From the above table, the point $\left( { - 4,2,5} \right)$ lies in octant II.

$\left( {{\mathbf{ - 3, - 1,6}}} \right)$

Ans: We have the following table,

Octant Coordinates

I

II

III

IV

V

VI

VII

VIII

$x$ 

+

-

-

+

+

-

-

+

$y$ 

+

+

-

-

+

+

-

-

$z$ 

+

+

+

+

-

-

-

-

From the above table, the point $\left( { - 3, - 1,6} \right)$ lies in octant III.

$\left( {{\mathbf{ - 2, - 4, - 7}}} \right)$

Ans: We have the following table,

Octant Coordinates

I

II

III

IV

V

VI

VII

VIII

$x$ 

+

-

-

+

+

-

-

+

$y$ 

+

+

-

-

+

+

-

-

$z$ 

+

+

+

+

-

-

-

-

From the above table, the point $\left( { - 2, - 4, - 7} \right)$ lies in octant VII.

4. Fill in the blanks:

(i) The x-axis and y-axis taken together determine a plane known as ___________ .

Ans:  In XY-plane, $z = 0$.

Hence, the $x$-axis and $y$-axis taken together determine a plane known as XY-plane.

(ii) The coordinates of points in the XY-plane are of the form _____________ .

Ans: In XY-plane, $z = 0$.

Let $x$-coordinate be $x$ and $y$-coordinate be $y$.

Hence, the coordinates of points in the XY-plane are of the form $\left( {x,y,0} \right)$.

(iii) Coordinate planes divide the space into ______ octants.

Ans: Coordinate planes divide the space into 8 octants.

CBSE Solutions for Class 11 Maths Chapter 11 - Introduction to Three Dimensional Geometry Exercise 11.1

The Class 11th Maths Chapter 11 Exercise 11.1 NCERT Solution is prepared by top teachers with years of teaching experience. These experienced teachers know exactly what is needed and they have prepared the notes exactly. They are subject-matter experts and they know which are the most important focus points. Furthermore, they are very well acquainted with the teacher's psychology. As a result, a vast majority of the question paper are already covered in this Exercise 11.1 Class 11 notes. This note is prepared as per the CBSE guidelines and everything in the syllabus is covered in this note. 

There are no rewards for guessing the fact that Class 11 Maths syllabus is gigantic and there are a plethora of things to cover. From Determinants to Derivatives, from Conics to Boolean Algebra, the syllabus is vast and is equally concept-oriented. There are so many things to cover but you only have a limited time. This is where NCERT Solutions  come into the picture. Notes such as Exercise 11.1 Class 11 Maths NCERT Solutions will provide you the perfect base for going forward. 

Talking of the importance of CBSE Class 11 Maths syllabus, the first thing that comes to mind is Three Dimensional Geometry. This is perhaps one of the most essential  chapters in the syllabus. This Chapter will put your application and conceptual understanding at test. This is why one of the main priorities was to make all the concepts clear. The NCERT Class 11 Maths Chapter 11 Exercise 11.1 specially focus on making the concepts clear with step-by-step solutions. 

After preparing from this note, you will feel more confident as your concepts will be clear. With a clear concept, you can solve all kinds of problems. Once you understand the framework, application is not that difficult. This is where practice is of utmost importance when it comes to a subject like CBSE Class 11 Maths. Unlike other subjects, Maths is something that you should practice once every day. However, it is true that there are a plethora of chapters and you cannot practice all. The time is very limited. This is where NCERT Solutions like Class 11 Maths Ch 11 Ex 11.1 will help your cause. You will get proper revision notes for all the chapters prepared by some of the most experienced and renowned faces in the education industry. You need to visit Vedantu's website or simply download the official Vedantu app to learn more from the most influential teachers. 

Some Useful Education Tips to Score Good Marks in Maths

Class 11 means that you are standing at the most pivotal part of your career. You are just a step away from the Class 12 exam. The scores you obtain now will stay with you forever. This is why it is of utmost importance to lay maximum focus. For a subject like Maths, you need to concentrate, understand, and practice. There is no denying the fact that Maths is one of the most feared subjects. The term Maths phobia or Mathematical anxiety is very common among Class 11 students. At the same time, Maths is one of the most scoring subjects. 

The best way to combat anxiety and fear related to this subject is by loving it. Maths is an extremely interesting subject and you will definitely fall in love with it if you start understanding the concepts, ideas, and applications. The idea is very clear - understand the concepts and improve your preparation. 

Here are some key tips that will certainly help you to master this subject: 

  • Plan Your Day - The NCERT Class 11 syllabus is humongous. However, you cannot afford to score excellent in a particular subject only. The board result will showcase the aggregate marks of all the subjects. As a result, you cannot spend an entire day studying English or practicing Maths. This is why you need to break your day into several parts and make the most of the available time. 

  • Understanding First - Maths is a subject which is entirely concept-based. You can certainly score excellent marks if your concepts are clear. This is why understanding not learning should always be the first priority. The Class 11 Ch 11 Ex 11.1 Maths NCERT Solutions is solely focused on bolstering your concepts with a focus on clear understanding. 

  • Practice Matters -  Regular practice is very important. You can practice the same sums but every time you will be learning something new. This is what practice does when it comes to a concept-oriented subject such as Maths. Practice regularly to strengthen your base. Chapters like Three Dimensional Geometry is entirely practice-oriented and it is exactly what you need for improving the base. When it comes to practice, you need the best notes. This is where NCERT Solutions Class 11 Maths Chapter 11 Ex 11.1 comes into the frame. Consult the notes created by the experts and start practicing.

  • Solve Mocks - Practice papers are very important. Keep solving mock papers and previous years papers to get a clear grip. It will certainly help you to keep calm and boost your confidence. This will certainly take your exam preparation to the next level in a matter of time. 

Start your exam preparations by downloading the NCERT Solutions Class 11 Maths Chapter 11 Ex 11.1 revision paper solved by Vedantu's top Maths experts. Download the free PDF to embrace smart and efficient learning.

Vedantu's main priority is to help young students to achieve their dreams. This is why you will find free PDFs on the official Vedantu site curated by top educational experts with more than a decade of experience in teaching a particular subject. All of these are free so that it is easily accessible by all the students in the country. Success is for all. The difference is in the effort invested. Vedantu aims to plan the first seeds of your success with free educational content.

NCERT Solution Class 11 Maths of Chapter 11 All Exercises

Exercises

Number of Questions

Exercise 11.2

4 Questions and Solutions

Miscellaneous Exercise

4 Questions and Solutions


CBSE Class 11 Maths Chapter 11 Other Study Materials


NCERT Class 11 Maths Solutions Chapter-wise Links - Download the FREE PDF


Important Related Links for CBSE Class 11 Maths

WhatsApp Banner

FAQs on NCERT Solutions For Class 11 Maths Chapter 11 Introduction To Three Dimensional Geometry Exercise 11.1 - 2025-26

1. What does class 11 maths chapter 11 exercise 11.1 solutions cover?

NCERT Solutions for Class 11 Maths Chapter 11 Exercise 11.1 cover fundamental coordinate geometry problems in three-dimensional space. Students practice plotting points, calculating distances between coordinates, and understanding the basic structure of 3D coordinate systems with step-by-step solutions.




2. How do students find the distance between two points in 3D geometry?

The distance between two points (x₁, y₁, z₁) and (x₂, y₂, z₂) in 3D space uses the formula: d = √[(x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²]. This extends the 2D distance formula by adding the z-coordinate component.


This formula is fundamental for calculating lengths, analyzing geometric shapes, and solving coordinate problems in three-dimensional space.






3. Can students download class 11 maths chapter 11 exercise 11.1 solutions as a Free PDF?

Yes, students can access comprehensive Free PDF solutions for ex 11.1 class 11 3D geometry that include detailed step-by-step explanations for all problems.




4. What are the key topics covered in Introduction to Three Dimensional Geometry?

Chapter 11 introduces students to coordinate geometry in three-dimensional space, covering the rectangular coordinate system, plotting points, and distance calculations. The chapter establishes foundational concepts for advanced 3D geometry.





5. Which mathematical skills does Exercise 11.1 help students develop?

Exercise 11.1 develops spatial visualization skills, coordinate plotting accuracy, and distance calculation proficiency in three-dimensional geometry. Students strengthen their algebraic manipulation abilities while learning to work confidently with square roots and coordinate substitution in 3D problems.



6. How do class 11 Maths NCERT solutions chapter 11 exercise 11.1 support exam preparation?

These NCERT solutions provide comprehensive practice for board exams and competitive tests by covering all problem types systematically. Each solution includes detailed working steps that help students understand methodology rather than just final answers.







7. What makes Vedantu's solutions different for 3D geometry problems?

Vedantu's solutions feature clear step-by-step explanations with visual aids and common mistake alerts for each 3D geometry problem. The solutions include alternative solving methods and practical tips that help students understand concepts thoroughly rather than memorizing procedures.




8. How should students approach coordinate plotting in three-dimensional space?

Students should visualize the three-axis system where x, y, and z axes are mutually perpendicular. Start by understanding how each coordinate represents distance along its respective axis from the origin point (0, 0, 0).





9. What common errors do students make in Exercise 11.1 problems?

Students frequently make sign errors when substituting coordinates into the distance formula and forget to include the z-coordinate component. Calculation mistakes often occur during squaring operations and taking square roots, especially with larger coordinate values or negative numbers.




10. Why is Chapter 11 considered foundational for higher mathematics?

Introduction to Three Dimensional Geometry establishes essential concepts for vector algebra, analytical geometry, and calculus applications. Students learn coordinate systems and distance calculations that directly support advanced topics in Classes 12 and beyond.