
Yellow ammonium sulphide solution is a suitable reagent for separation of:
(A) $HgS$ and $PbS$
(B) $PbS$ and $B{{i}_{2}}{{S}_{3}}$
(C) $B{{i}_{2}}{{S}_{3}}$ and $CuS$
(D) $CdS$ and $A{{s}_{2}}{{S}_{3}}$
Answer
232.8k+ views
Hint: Sulphide of arsenic, tin is soluble in yellow ammonium sulphide. Sulfides of cadmium are insoluble in yellow ammonium sulphide. Yellow ammonium sulphide is used to separate sulphide of group llA and group llB.
Complete solution step by step:
- Qualitative inorganic analysis is used to detect ions in aqueous solution.
- Solutions are treated with various reagents and reactions may cause precipitation, color change or any other visible changes.
- Cations are divided into six groups according to properties.
First analytical group consists of ions which form insoluble chlorides.
Second analytical group consists of ions which form acid insoluble sulphide.
- The reagents used are any substance that gives sulphide ions in solution.
- Basic sulphides are insoluble in yellow ammonium sulphide and are grouped as llA. Acidic sulphides are soluble in yellow ammonium sulphide due to complex formation. They are grouped as llB.
- Sulphides of mercury, lead, bismuth, copper and cadmium are basic in nature.
- Sulphides of arsenic, tin and antimony are acidic in nature.
- The sulphides of arsenic, tin, and antimony are soluble in yellow ammonium sulphide solution as they form polysulphide complexes. Sulphides of arsenic are acidic in nature.
- When Cadmium sulphide is added in water then hydrochloric acid is added followed by hydrogen sulphide gas, yellow precipitate is formed. Sulfides of cadmium are basic in nature.
Hence, Yellow ammonium sulphide solution is a suitable reagent for separation of (D) $CdS$ and $A{{s}_{2}}{{S}_{3}}$.
Note:
Cations in second group include:
$C{{d}^{+2}}, B{{i}^{+3}}, C{{u}^{+2}}, A{{s}^{+3}}, A{{s}^{+5}}, S{{b}^{+5}}, S{{b}^{+3}}, S{{n}^{+2}}, S{{n}^{+2}}, S{{n}^{+4}}, H{{g}^{+2}}, P{{b}^{+2}}$. The precipitates of these cannot be distinguished except cadmium sulphide which is yellow. Except mercury sulphide, all sulphides are soluble in dilute nitric acid. Copper sulphide dissolves in ammonia giving an intense blue solution whereas cadmium sulphide gives a colorless solution.
Complete solution step by step:
- Qualitative inorganic analysis is used to detect ions in aqueous solution.
- Solutions are treated with various reagents and reactions may cause precipitation, color change or any other visible changes.
- Cations are divided into six groups according to properties.
First analytical group consists of ions which form insoluble chlorides.
Second analytical group consists of ions which form acid insoluble sulphide.
- The reagents used are any substance that gives sulphide ions in solution.
- Basic sulphides are insoluble in yellow ammonium sulphide and are grouped as llA. Acidic sulphides are soluble in yellow ammonium sulphide due to complex formation. They are grouped as llB.
- Sulphides of mercury, lead, bismuth, copper and cadmium are basic in nature.
- Sulphides of arsenic, tin and antimony are acidic in nature.
- The sulphides of arsenic, tin, and antimony are soluble in yellow ammonium sulphide solution as they form polysulphide complexes. Sulphides of arsenic are acidic in nature.
- When Cadmium sulphide is added in water then hydrochloric acid is added followed by hydrogen sulphide gas, yellow precipitate is formed. Sulfides of cadmium are basic in nature.
Hence, Yellow ammonium sulphide solution is a suitable reagent for separation of (D) $CdS$ and $A{{s}_{2}}{{S}_{3}}$.
Note:
Cations in second group include:
$C{{d}^{+2}}, B{{i}^{+3}}, C{{u}^{+2}}, A{{s}^{+3}}, A{{s}^{+5}}, S{{b}^{+5}}, S{{b}^{+3}}, S{{n}^{+2}}, S{{n}^{+2}}, S{{n}^{+4}}, H{{g}^{+2}}, P{{b}^{+2}}$. The precipitates of these cannot be distinguished except cadmium sulphide which is yellow. Except mercury sulphide, all sulphides are soluble in dilute nitric acid. Copper sulphide dissolves in ammonia giving an intense blue solution whereas cadmium sulphide gives a colorless solution.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

In Carius method of estimation of halogens 015g of class 11 chemistry JEE_Main

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Chemistry in Hindi Chapter 1 Some Basic Concepts of Chemistry (2025-26)

NCERT Solutions For Class 11 Chemistry in Hindi Chapter 8 Redox Reactions (2025-26)

An ideal gas is at pressure P and temperature T in class 11 chemistry JEE_Main

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

