Which units of pressure are needed if you are going to use 0.0821 as your ideal gas constant?
(A) Atmospheric
(B) Torr
(C) Psi
(D) mmHg
(E) Pascals
Answer
Verified
117.6k+ views
Hint: An ideal gas obeys ideal gas equation \[{\text{PV = nRT}}\]where ‘R’ is the universal gas constant whose units depend upon pressure(P), volume(V) and temperature(T).
Complete step by step answer: The unit of pressure in an ideal gas equation can be found from the gas constant values. The standard unit for pressure is Pascal (Pa) which is equal to 1 Newton (N) per square meter. Pressure can be expressed in any of the following units:
A. Atmospheric(atm)
B. Torr
C. Pounds per square inch (Psi)
D. mmHg
E. Pascal (Pa)
F. Bar
Since at various pressure and temperature units the gas constant value varies. The various values of gas constant with their corresponding units are given below:
\[
{\text{R = 0}}{\text{.0821 L atm }}{{\text{K}}^{{\text{ - 1}}}} \\
{\text{R = 8}}{\text{.314 J }}{{\text{K}}^{{\text{ - 1}}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}} \\
{\text{R = 1}}{\text{.987 cal }}{{\text{K}}^{{\text{ - 1}}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}} \\
\]
The given ideal gas constant is 0.0821 which has the unit of \[{\text{L atm }}{{\text{K}}^{{\text{ - 1}}}}\]thus we get the unit of pressure is atm that is expressed in atmospheric.
So, the correct option is A.
Additional Information: ideal gas obeys the following obeys ideal gas equation
\[{\text{PV = nRT}}\]
where ‘P’ is the pressure of the gas, ‘V’ is the volume of the gas, ‘n’ is the number of moles , ‘T’ is the temperature and ‘R’ is the universal gas
At S.T.P (Standard Temperature and Pressure)
P = 1 atm, T = 273 K or 0° C and volume of gas is 22.4 L,
Let’s assume n = 1. Therefore, by calculation we get R = 0.0821 \[{\text{L atm }}{{\text{K}}^{{\text{ - 1}}}}\]
In C.G.S system, n and T remains same (no unit change), ${\text{P = 1atm = 1}}{{\text{0}}^{\text{5}}}{{ \times 101325dyn/}}{{\text{m}}^{\text{2}}}$, V= 22400ml, then by calculation we get ${\text{R = 8}}{\text{.314 \times 1}}{{\text{0}}^{\text{7}}}{\text{ergs mo}}{{\text{l}}^{{\text{ - 1}}}}{{\text{K}}^{{\text{ - 1}}}}$
In M.K.S system or SI system
$
{\text{P = 101325N/}}{{\text{m}}^{\text{2}}}{\text{ and V = 22}}{{.4 \times 1}}{{\text{0}}^{\text{ - }}}{\text{3}}{{\text{m}}^{\text{3}}} \\
\Rightarrow {\text{R = 8}}{\text{.314J/Mol}}{\text{.kel}} \\
$
Note: Useful unit conversions:
- Joule (J) to Kilojoule (kJ)
${\text{1kJ = 1}}{{\text{0}}^{\text{3}}}{\text{J}}$
- Joule(J) to Calories (cal)
1 Cal = 4.184 J
- Atmospheric(atm) to Torr
${\text{1 atm = 760 torr}}$
- Pounds per square inch (Psi) to mmHg
${\text{1Psi = 51}}{\text{.7151\;mmHg}}$
Complete step by step answer: The unit of pressure in an ideal gas equation can be found from the gas constant values. The standard unit for pressure is Pascal (Pa) which is equal to 1 Newton (N) per square meter. Pressure can be expressed in any of the following units:
A. Atmospheric(atm)
B. Torr
C. Pounds per square inch (Psi)
D. mmHg
E. Pascal (Pa)
F. Bar
Since at various pressure and temperature units the gas constant value varies. The various values of gas constant with their corresponding units are given below:
\[
{\text{R = 0}}{\text{.0821 L atm }}{{\text{K}}^{{\text{ - 1}}}} \\
{\text{R = 8}}{\text{.314 J }}{{\text{K}}^{{\text{ - 1}}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}} \\
{\text{R = 1}}{\text{.987 cal }}{{\text{K}}^{{\text{ - 1}}}}{\text{ mo}}{{\text{l}}^{{\text{ - 1}}}} \\
\]
The given ideal gas constant is 0.0821 which has the unit of \[{\text{L atm }}{{\text{K}}^{{\text{ - 1}}}}\]thus we get the unit of pressure is atm that is expressed in atmospheric.
So, the correct option is A.
Additional Information: ideal gas obeys the following obeys ideal gas equation
\[{\text{PV = nRT}}\]
where ‘P’ is the pressure of the gas, ‘V’ is the volume of the gas, ‘n’ is the number of moles , ‘T’ is the temperature and ‘R’ is the universal gas
At S.T.P (Standard Temperature and Pressure)
P = 1 atm, T = 273 K or 0° C and volume of gas is 22.4 L,
Let’s assume n = 1. Therefore, by calculation we get R = 0.0821 \[{\text{L atm }}{{\text{K}}^{{\text{ - 1}}}}\]
In C.G.S system, n and T remains same (no unit change), ${\text{P = 1atm = 1}}{{\text{0}}^{\text{5}}}{{ \times 101325dyn/}}{{\text{m}}^{\text{2}}}$, V= 22400ml, then by calculation we get ${\text{R = 8}}{\text{.314 \times 1}}{{\text{0}}^{\text{7}}}{\text{ergs mo}}{{\text{l}}^{{\text{ - 1}}}}{{\text{K}}^{{\text{ - 1}}}}$
In M.K.S system or SI system
$
{\text{P = 101325N/}}{{\text{m}}^{\text{2}}}{\text{ and V = 22}}{{.4 \times 1}}{{\text{0}}^{\text{ - }}}{\text{3}}{{\text{m}}^{\text{3}}} \\
\Rightarrow {\text{R = 8}}{\text{.314J/Mol}}{\text{.kel}} \\
$
Note: Useful unit conversions:
- Joule (J) to Kilojoule (kJ)
${\text{1kJ = 1}}{{\text{0}}^{\text{3}}}{\text{J}}$
- Joule(J) to Calories (cal)
1 Cal = 4.184 J
- Atmospheric(atm) to Torr
${\text{1 atm = 760 torr}}$
- Pounds per square inch (Psi) to mmHg
${\text{1Psi = 51}}{\text{.7151\;mmHg}}$
Recently Updated Pages
A team played 40 games in a season and won 24 of them class 9 maths JEE_Main
Here are the shadows of 3 D objects when seen under class 9 maths JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
Madhuri went to a supermarket The price changes are class 9 maths JEE_Main
If ax by czand b2 ac then the value of yis 1dfrac2xzleft class 9 maths JEE_Main
Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025
Clemmenson and Wolff Kishner Reductions for JEE
Other Pages
The number of d p bonds present respectively in SO2 class 11 chemistry JEE_Main
JEE Advanced 2024 Syllabus Weightage
JEE Main Chemistry Exam Pattern 2025
Aqueous solution of HNO3 KOH CH3COOH CH3COONa of identical class 11 chemistry JEE_Main
JEE Main 2025: Application Form, Exam Dates, Eligibility, and More
Christmas Day History - Celebrate with Love and Joy