
Which one has the highest paramagnetism [AMU 2001]
(A) $[Ni{{(CO)}_{4}}]$
(B) $[Ni{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
(C) $[Ni{{(N{{H}_{3}})}_{6}}]C{{l}_{2}}$
(D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
Answer
218.7k+ views
Hint: The electronic configuration of the metal ions that are present in the complexes must first be determined. The pairing of electrons occurs depending on the strength of the ligands attached to the metal. If any unpaired electron remains in the complex, then it is paramagnetic in nature. The greater the number of unpaired electrons, the greater is the paramagnetism. However, if no unpaired electron remains in the complex, then it is diamagnetic in nature.
Complete answer:The electronic configurations of the metal ions present in the solution are as shown:
(A) $[Ni{{(CO)}_{4}}]$
$N{{i}^{{}}}$- $[Ar]3{{d}^{8}}$
$CO$ is a strong ligand. It induces a pairing of electrons as four $CO$ ligands approach the nickel metal. So, it is diamagnetic.
B) $[Ni{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
$N{{i}^{2+}}$ - $[Ar]3{{d}^{6}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the nickel metal. So, it is diamagnetic.
(C) $[Ni{{(N{{H}_{3}})}_{6}}]C{{l}_{2}}$
$N{{i}^{2+}}$ - $[Ar]3{{d}^{6}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the nickel metal. So, it is diamagnetic.
(D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
$C{{u}^{2+}}$- $[Ar]3{{d}^{9}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the copper metal, but still, an electron remains unpaired. Hence, it is diamagnetic.
Thus, $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$has highest paramagnetism.
Correct Option: (D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
Note: The coordination compound complexes have magnetic properties. A molecule's magnetic characteristics are determined by the number of unpaired electrons in it, and magnetism is produced by electronic spin. The complexes typically display the three types of magnetism: ferromagnetism, paramagnetism, and diamagnetism.
Complete answer:The electronic configurations of the metal ions present in the solution are as shown:
(A) $[Ni{{(CO)}_{4}}]$
$N{{i}^{{}}}$- $[Ar]3{{d}^{8}}$
$CO$ is a strong ligand. It induces a pairing of electrons as four $CO$ ligands approach the nickel metal. So, it is diamagnetic.
B) $[Ni{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
$N{{i}^{2+}}$ - $[Ar]3{{d}^{6}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the nickel metal. So, it is diamagnetic.
(C) $[Ni{{(N{{H}_{3}})}_{6}}]C{{l}_{2}}$
$N{{i}^{2+}}$ - $[Ar]3{{d}^{6}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the nickel metal. So, it is diamagnetic.
(D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
$C{{u}^{2+}}$- $[Ar]3{{d}^{9}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the copper metal, but still, an electron remains unpaired. Hence, it is diamagnetic.
Thus, $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$has highest paramagnetism.
Correct Option: (D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
Note: The coordination compound complexes have magnetic properties. A molecule's magnetic characteristics are determined by the number of unpaired electrons in it, and magnetism is produced by electronic spin. The complexes typically display the three types of magnetism: ferromagnetism, paramagnetism, and diamagnetism.
Recently Updated Pages
Is PPh3 a strong ligand class 12 chemistry JEE_Main

Full name of DDT is A 111trichloro22bispchlorophenyl class 12 chemistry JEE_Main

Sodium acetate on heating with soda lime produce A class 12 chemistry JEE_Main

Find the isoelectric point pI of Lysine A 556 B 974 class 12 chemistry JEE_Main

The order of basicity among the following compounds class 12 chemistry JEE_Main

The number of isomers in C4H10O are a7 b8 c6 d5 class 12 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions - 2025-26

NCERT Solutions for Class 12 Chemistry Chapter Chapter 7 Alcohol Phenol and Ether

NCERT Solutions ForClass 12 Chemistry Chapter Chapter 8 Aldehydes Ketones And Carboxylic Acids

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Haloalkanes and Haloarenes Class 12 Chemistry Chapter 6 CBSE Notes - 2025-26

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

