
Which one has the highest paramagnetism [AMU 2001]
(A) $[Ni{{(CO)}_{4}}]$
(B) $[Ni{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
(C) $[Ni{{(N{{H}_{3}})}_{6}}]C{{l}_{2}}$
(D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
Answer
164.4k+ views
Hint: The electronic configuration of the metal ions that are present in the complexes must first be determined. The pairing of electrons occurs depending on the strength of the ligands attached to the metal. If any unpaired electron remains in the complex, then it is paramagnetic in nature. The greater the number of unpaired electrons, the greater is the paramagnetism. However, if no unpaired electron remains in the complex, then it is diamagnetic in nature.
Complete answer:The electronic configurations of the metal ions present in the solution are as shown:
(A) $[Ni{{(CO)}_{4}}]$
$N{{i}^{{}}}$- $[Ar]3{{d}^{8}}$
$CO$ is a strong ligand. It induces a pairing of electrons as four $CO$ ligands approach the nickel metal. So, it is diamagnetic.
B) $[Ni{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
$N{{i}^{2+}}$ - $[Ar]3{{d}^{6}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the nickel metal. So, it is diamagnetic.
(C) $[Ni{{(N{{H}_{3}})}_{6}}]C{{l}_{2}}$
$N{{i}^{2+}}$ - $[Ar]3{{d}^{6}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the nickel metal. So, it is diamagnetic.
(D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
$C{{u}^{2+}}$- $[Ar]3{{d}^{9}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the copper metal, but still, an electron remains unpaired. Hence, it is diamagnetic.
Thus, $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$has highest paramagnetism.
Correct Option: (D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
Note: The coordination compound complexes have magnetic properties. A molecule's magnetic characteristics are determined by the number of unpaired electrons in it, and magnetism is produced by electronic spin. The complexes typically display the three types of magnetism: ferromagnetism, paramagnetism, and diamagnetism.
Complete answer:The electronic configurations of the metal ions present in the solution are as shown:
(A) $[Ni{{(CO)}_{4}}]$
$N{{i}^{{}}}$- $[Ar]3{{d}^{8}}$
$CO$ is a strong ligand. It induces a pairing of electrons as four $CO$ ligands approach the nickel metal. So, it is diamagnetic.
B) $[Ni{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
$N{{i}^{2+}}$ - $[Ar]3{{d}^{6}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the nickel metal. So, it is diamagnetic.
(C) $[Ni{{(N{{H}_{3}})}_{6}}]C{{l}_{2}}$
$N{{i}^{2+}}$ - $[Ar]3{{d}^{6}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the nickel metal. So, it is diamagnetic.
(D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
$C{{u}^{2+}}$- $[Ar]3{{d}^{9}}$
$N{{H}_{3}}$ is a strong ligand. It induces a pairing of electrons as four $N{{H}_{3}}$ ligands approach the copper metal, but still, an electron remains unpaired. Hence, it is diamagnetic.
Thus, $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$has highest paramagnetism.
Correct Option: (D) $[Cu{{(N{{H}_{3}})}_{4}}]C{{l}_{2}}$
Note: The coordination compound complexes have magnetic properties. A molecule's magnetic characteristics are determined by the number of unpaired electrons in it, and magnetism is produced by electronic spin. The complexes typically display the three types of magnetism: ferromagnetism, paramagnetism, and diamagnetism.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 12 Chemistry Chapter 1 Solutions

Solutions Class 12 Notes: CBSE Chemistry Chapter 1

NCERT Solutions for Class 12 Chemistry Chapter 6 Haloalkanes and Haloarenes

NCERT Solutions for Class 12 Chemistry Chapter 2 Electrochemistry

Electrochemistry Class 12 Notes: CBSE Chemistry Chapter 2
