
Which of the following has the highest normality?
A) \[1M\,{H_2}S{O_4}\]
B) \[1M\,{H_3}P{O_3}\]
C) \[1M\,{H_3}P{O_4}\]
D) \[1M\,HN{O_3}\]
Answer
232.8k+ views
Hint: ormality is defined as a unit that helps in the measurement of the concentration of a solution. It is often used in titration reactions and is abbreviated as ‘N’. It is also known as equivalent concentration.
Formula used: The formula to calculate normality is as follows:
\[Normality = Molarity \times {n_{factor}}\]
\[Normality = Molarity \times \,basicity\] ,
if the basicity is to be found, we can count the number of \[{H^ + }\] ions in the acid molecule that it can donate.
\[Normality = Molarity \times Acidity\]
To calculate the acidity of the molecule we can count the number of \[O{H^ - }\] ions that a base can donate.
In the question mentioned above, all of the chemical compounds have the same molarity, the chemical substance with the greatest \[{n_{factor}}\] will have the highest normality.
Complete Step by Step Solution:
1) For \[1M\,{H_2}S{O_4}\] ,
\[Basicity = 2 = {n_{factor}}\]
2) For \[1M\,{H_3}P{O_3}\]
\[Basicity = 2 = {n_{factor}}\]
3) For \[1M\,{H_3}P{O_4}\]
\[Basicity = 3 = {n_{factor}}\]
4) For \[1M\,HN{O_3}\]
\[Basicity = 1 = {n_{factor}}\]
So \[{H_3}P{O_4}\] will have the highest normality in the question mentioned above.
Hence, option (C) will be the correct answer
Note: Normality is used in mostly three situations such as:
1) It is used to determine concentrations in the acid and base chemistry
2) It is used in precipitation reactions to determine the number of ions which, after a reaction will form into precipitate
3) It is also often used in the redox reactions. It helps to determine the number of electrons a reducing agent can donate or the number of electrons that the oxidising agent can accept.
Apart from the above applications, normality also has certain limitations such as it requires the determination of a proper equivalence factor and its value is not specific and can often change on the basis of the chemical reaction.
Formula used: The formula to calculate normality is as follows:
\[Normality = Molarity \times {n_{factor}}\]
\[Normality = Molarity \times \,basicity\] ,
if the basicity is to be found, we can count the number of \[{H^ + }\] ions in the acid molecule that it can donate.
\[Normality = Molarity \times Acidity\]
To calculate the acidity of the molecule we can count the number of \[O{H^ - }\] ions that a base can donate.
In the question mentioned above, all of the chemical compounds have the same molarity, the chemical substance with the greatest \[{n_{factor}}\] will have the highest normality.
Complete Step by Step Solution:
1) For \[1M\,{H_2}S{O_4}\] ,
\[Basicity = 2 = {n_{factor}}\]
2) For \[1M\,{H_3}P{O_3}\]
\[Basicity = 2 = {n_{factor}}\]
3) For \[1M\,{H_3}P{O_4}\]
\[Basicity = 3 = {n_{factor}}\]
4) For \[1M\,HN{O_3}\]
\[Basicity = 1 = {n_{factor}}\]
So \[{H_3}P{O_4}\] will have the highest normality in the question mentioned above.
Hence, option (C) will be the correct answer
Note: Normality is used in mostly three situations such as:
1) It is used to determine concentrations in the acid and base chemistry
2) It is used in precipitation reactions to determine the number of ions which, after a reaction will form into precipitate
3) It is also often used in the redox reactions. It helps to determine the number of electrons a reducing agent can donate or the number of electrons that the oxidising agent can accept.
Apart from the above applications, normality also has certain limitations such as it requires the determination of a proper equivalence factor and its value is not specific and can often change on the basis of the chemical reaction.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

