
What is the value of acceleration of blocks A and B if F = 40N and mass of block A is 5 kg and mass of block B is 10 kg? The arrangement of two blocks is shown below in the figure.

Answer
171.9k+ views
Hint At first, find the value of limiting friction on all contact surfaces which is denoted by ${f_{s\max }}$.
Then, by using the below formula, find out the acceleration for both blocks one by one from given values in question,
$\Rightarrow F - {f_{s\max }} = ma$
where, ${f_{s\max }} = $limiting value of friction
$m = $mass of a block
$a = $acceleration of a block.
Complete step by step Solution
The force which opposes motion of an object moving relative to another is called Friction. It is not a fundamental force.
The maximum value of static friction that occurs when the body is just at the sliding point of the surface of another body. In other words, we can say that it is a product of coefficients of limiting friction and normal force. We can express it mathematically as,
$\Rightarrow {f_{s\max }} = \mu N$
Normal force can also be written as,
$\Rightarrow$ $N = mg$(where, $g = 10m{s^{ - 2}}$)
To find out the acceleration from limiting friction we need to use the below expression,
$\Rightarrow$ $F - {f_{s\max }} = ma \cdots (1)$
So, let ${m_a}$ and ${m_b}$ be the mass of blocks A and B respectively and let ${a_a}$ and ${a_b}$ be the acceleration of blocks A and B respectively.
So, at first, we will find the acceleration for block A
Therefore, from equation $(1)$ we get,
$\Rightarrow F - {f_{s\max }} = {m_a}{a_a} $
$\Rightarrow F - \mu \times N = {m_a}{a_a} $
$\Rightarrow F - \mu \times {m_a}g = {m_a}{a_a} $
$\Rightarrow 40 - 0.5 \times 5 \times 10 = 5{a_a} $
$\Rightarrow 40 - 25 = 5{a_a} $
$\Rightarrow 15 = 5{a_a} $
$\Rightarrow {a_a} = 3m/{s^2} $
Let ${N'}$ be the force acting upon block A from block B -
$\therefore {N'} = N + {m_b}g$
So,
$\Rightarrow {\mu _1}N - {\mu _2}N' = {m_b}{a_b} $
$\Rightarrow 0.5 \times 50 - 0.2(50 + 10 \times 10) = 10{a_b} $
$\Rightarrow 25 - 0.2(150) = 10{a_b} $
$\Rightarrow 25 - 30 = 10{a_b} $
$\Rightarrow {a_b} = \dfrac{{ - 5}}{{10}}m/{s^2} $
So, the acceleration of block B is nearly 0.
Note Limiting friction occurs when the body is just at sliding point over another’s body surface. Limiting friction always opposes the motion of an object. When the surfaces are in contact, the limiting friction always acts tangentially to them.
Then, by using the below formula, find out the acceleration for both blocks one by one from given values in question,
$\Rightarrow F - {f_{s\max }} = ma$
where, ${f_{s\max }} = $limiting value of friction
$m = $mass of a block
$a = $acceleration of a block.
Complete step by step Solution
The force which opposes motion of an object moving relative to another is called Friction. It is not a fundamental force.
The maximum value of static friction that occurs when the body is just at the sliding point of the surface of another body. In other words, we can say that it is a product of coefficients of limiting friction and normal force. We can express it mathematically as,
$\Rightarrow {f_{s\max }} = \mu N$
Normal force can also be written as,
$\Rightarrow$ $N = mg$(where, $g = 10m{s^{ - 2}}$)
To find out the acceleration from limiting friction we need to use the below expression,
$\Rightarrow$ $F - {f_{s\max }} = ma \cdots (1)$
So, let ${m_a}$ and ${m_b}$ be the mass of blocks A and B respectively and let ${a_a}$ and ${a_b}$ be the acceleration of blocks A and B respectively.
So, at first, we will find the acceleration for block A
Therefore, from equation $(1)$ we get,
$\Rightarrow F - {f_{s\max }} = {m_a}{a_a} $
$\Rightarrow F - \mu \times N = {m_a}{a_a} $
$\Rightarrow F - \mu \times {m_a}g = {m_a}{a_a} $
$\Rightarrow 40 - 0.5 \times 5 \times 10 = 5{a_a} $
$\Rightarrow 40 - 25 = 5{a_a} $
$\Rightarrow 15 = 5{a_a} $
$\Rightarrow {a_a} = 3m/{s^2} $
Let ${N'}$ be the force acting upon block A from block B -
$\therefore {N'} = N + {m_b}g$
So,
$\Rightarrow {\mu _1}N - {\mu _2}N' = {m_b}{a_b} $
$\Rightarrow 0.5 \times 50 - 0.2(50 + 10 \times 10) = 10{a_b} $
$\Rightarrow 25 - 0.2(150) = 10{a_b} $
$\Rightarrow 25 - 30 = 10{a_b} $
$\Rightarrow {a_b} = \dfrac{{ - 5}}{{10}}m/{s^2} $
So, the acceleration of block B is nearly 0.
Note Limiting friction occurs when the body is just at sliding point over another’s body surface. Limiting friction always opposes the motion of an object. When the surfaces are in contact, the limiting friction always acts tangentially to them.
Recently Updated Pages
Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Hydrocarbons: Types, Formula, Structure & Examples Explained

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
NCERT Solution for Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solution for Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solution for Class 11 Physics Chapter 3 Motion In A Plane - 2025-26
