
Unit mass of a liquid with volume ${V_1}$ is completely changed into a gas of volume ${V_2}$ at a constant external pressure $P$ and temperature $T$ . If the latent heat of evaporation for the given mass is $L$ , then the increase in the internal energy of the system is?
A. Zero
B. $P({V_2} - {V_1})$
C. $L - P({V_2} - {V_1})$
D. $L$
Answer
161.1k+ views
Hint: Generally when external input energy is required to change the state from liquid into gases or vapor at constant temperature and constant external pressure is called the latent heat of vaporization. So, we can find out the increase internal energy of the system by using work done formula from the first law of thermodynamics, which is mentioned in below.
Formula used:
The formulae used in the solution of this problem are: -
$\Delta U = Q - W$
$Work Done = W = P\Delta V = P({V_2} - {V_1})$
Complete answer:
We know that the First Law of Thermodynamics is the application of conservation of energy and according to the first law: -
$\Delta U = Q - W$ … (1)
where $\Delta U = $ Change in Internal Energy
$Q = $ Heat Added to the system
$W = $ Work done by the system
Now, Pressure-Volume Work in thermodynamics is defined as: -
At constant pressure $Workdone = W = P\Delta V = P({V_2} - {V_1})$
From eq. (1), we get
$\Delta U = mL - P({V_2} - {V_1})$
$\left( {\therefore Q = m \times L} \right)$
where $L = $ Latent heat of evaporation (given)
and since the unit mass of liquid is taken, therefore $m = 1$
Thus, the increase in the internal energy of the system is: -
$ \Rightarrow \Delta U = (1)L - P({V_2} - {V_1}) = L - P({V_2} - {V_1})$
Hence, the correct option is (C) $L - P({V_2} - {V_1})$.
Note: Gases have higher internal energy as compared to solid and liquid state. This is because lot of energy is required to boind up the bonds between atoms or molecules and as a result this huge amount of energy provides a negative contribution to the internal energy in the solid and liquid state.
Formula used:
The formulae used in the solution of this problem are: -
$\Delta U = Q - W$
$Work Done = W = P\Delta V = P({V_2} - {V_1})$
Complete answer:
We know that the First Law of Thermodynamics is the application of conservation of energy and according to the first law: -
$\Delta U = Q - W$ … (1)
where $\Delta U = $ Change in Internal Energy
$Q = $ Heat Added to the system
$W = $ Work done by the system
Now, Pressure-Volume Work in thermodynamics is defined as: -
At constant pressure $Workdone = W = P\Delta V = P({V_2} - {V_1})$
From eq. (1), we get
$\Delta U = mL - P({V_2} - {V_1})$
$\left( {\therefore Q = m \times L} \right)$
where $L = $ Latent heat of evaporation (given)
and since the unit mass of liquid is taken, therefore $m = 1$
Thus, the increase in the internal energy of the system is: -
$ \Rightarrow \Delta U = (1)L - P({V_2} - {V_1}) = L - P({V_2} - {V_1})$
Hence, the correct option is (C) $L - P({V_2} - {V_1})$.
Note: Gases have higher internal energy as compared to solid and liquid state. This is because lot of energy is required to boind up the bonds between atoms or molecules and as a result this huge amount of energy provides a negative contribution to the internal energy in the solid and liquid state.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

Two billiard balls of the same size and mass are in class 11 physics JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Class 11 JEE Main Physics Mock Test 2025

Differentiate between audible and inaudible sounds class 11 physics JEE_Main

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
