
Two roads cross at right angles at \[O\]. One person \[A\] walking along one of the roads at \[3m/s\] sees another person \[B\] walking at \[4m/s\] along the other road at \[O\], when he is \[10m\] off. The nearest distance between the two persons is:
A) \[10m\]
B) \[9m\]
C) \[8m\]
D) \[7.2m\]
Answer
144.9k+ views
Hint: It is clear in this question when two paths are at right angles at any one point and we have to find a minimum distance between two points, we can easily apply Pythagoras theorem. If we know about the distance of both persons from origin then we can apply Pythagoras theorem and the hypothesis of the right angle triangle we get will be the minimum distance between two persons.
Formula used:
According to the Pythagoras theorem, "the square of hypotenuse is equal to the sum of the squares of perpendicular and base in the right angle triangle."
A numeral form Pythagoras can be written as
\[{(hypotenuse)^2}{\text{ }} = {\text{ }}{\left( {perpendicular} \right)^2}{\text{ }} + {\text{ }}{\left( {base} \right)^2}\]
\[ \Rightarrow {(h)^2} = {(p)^2} + {\left( b \right)^2}\]
And for finding distance between two points we can apply the simplest distance formula -
\[Distance = speed \times time\]
Complete step by step solution:
When one person \[A\] is walking on the first road. It will see the person on another road which is at the right angle from the first road as the triangle formed between these three points. One is origin and the other two are both persons.
Now consider both persons are at the nearest distance after time \[t\]. So, firstly we have to find the distance of both persons from origin are (\[OA\] and \[OB\])

Person \[A\] in already \[10m\] off so, the distance \[OA = {\text{ [}}10 - \left( {speed \times time)} \right]\]
According to the question, the speed of a person \[A\] is $3m/s$.
\[
\Rightarrow OA = 10 - 3t \\
\Rightarrow OA = (10 - 3t)m \\
\]
The distance between person \[B\] and origin.
\[\begin{array}{*{20}{l}}
{ \Rightarrow OB = speed \times time} \\
{ \Rightarrow OB = 4 \times t} \\
{ \Rightarrow OB = 4t m}
\end{array}\]
If at time \[t\], the distance between both persons is nearest then the hypotenuse \[AB\] will represent the minimum distance.
So, according to Pythagoras theorem.
\[{(AB)^2} = {(OA)^2} + {(OB)^2}\]
Substituting the values of OA and 013.
\[
\Rightarrow {(AB)^2} = {(10 - 3t)^2} + {(4t)^2} \\
\Rightarrow {(AB)^2} = 100 + 9{t^2} - 60t + 100 \\
\Rightarrow {(AB)^2} = 25{t^2} - 60t + 100 \\
\]
Now for making this equation on the polynomial in \[t\].
\[ \Rightarrow {(AB)^2} = 25{t^2} - 60t + 36 + 64\]
\[ \Rightarrow {(AB)^2} = {(5t - 6)^2} + 64\]..................... (i)
But we are finding the least distance between both persons. So, by applying \[AB \to min\] to equation (i)
$
\Rightarrow 5t - 6 = 0 \\
\Rightarrow t = \dfrac{6}{5} \\
\Rightarrow t = 1.2\sec \\
$
So, $t = 1.2\sec $ both persons are at the nearest distance from each other. Now, we get from equation (i)
$ \Rightarrow [{(5t - 6)^2} + 64] = {(AB)^2}$
Substituting $t = 1.2\sec $ in the above equation.
\[
\Rightarrow [{(5 \times 1.2 - 6)^2} + 64] = {(AB)^2} \\
\Rightarrow {(AB)^2} = [{(6 - 6)^2} + 64] \\
\Rightarrow {(AB)^2} = 64 \\
\Rightarrow AB = 8m \\
\]
Hence, $8m$ is the nearest distance between two persons.
Therefore, option (C) is correct.
Note: The nearest distance or least distance between two points is known as displacement. The limit is applied only for the time \[t\]. So, the limit will not be applied on other quantities.
Formula used:
According to the Pythagoras theorem, "the square of hypotenuse is equal to the sum of the squares of perpendicular and base in the right angle triangle."
A numeral form Pythagoras can be written as
\[{(hypotenuse)^2}{\text{ }} = {\text{ }}{\left( {perpendicular} \right)^2}{\text{ }} + {\text{ }}{\left( {base} \right)^2}\]
\[ \Rightarrow {(h)^2} = {(p)^2} + {\left( b \right)^2}\]
And for finding distance between two points we can apply the simplest distance formula -
\[Distance = speed \times time\]
Complete step by step solution:
When one person \[A\] is walking on the first road. It will see the person on another road which is at the right angle from the first road as the triangle formed between these three points. One is origin and the other two are both persons.
Now consider both persons are at the nearest distance after time \[t\]. So, firstly we have to find the distance of both persons from origin are (\[OA\] and \[OB\])

Person \[A\] in already \[10m\] off so, the distance \[OA = {\text{ [}}10 - \left( {speed \times time)} \right]\]
According to the question, the speed of a person \[A\] is $3m/s$.
\[
\Rightarrow OA = 10 - 3t \\
\Rightarrow OA = (10 - 3t)m \\
\]
The distance between person \[B\] and origin.
\[\begin{array}{*{20}{l}}
{ \Rightarrow OB = speed \times time} \\
{ \Rightarrow OB = 4 \times t} \\
{ \Rightarrow OB = 4t m}
\end{array}\]
If at time \[t\], the distance between both persons is nearest then the hypotenuse \[AB\] will represent the minimum distance.
So, according to Pythagoras theorem.
\[{(AB)^2} = {(OA)^2} + {(OB)^2}\]
Substituting the values of OA and 013.
\[
\Rightarrow {(AB)^2} = {(10 - 3t)^2} + {(4t)^2} \\
\Rightarrow {(AB)^2} = 100 + 9{t^2} - 60t + 100 \\
\Rightarrow {(AB)^2} = 25{t^2} - 60t + 100 \\
\]
Now for making this equation on the polynomial in \[t\].
\[ \Rightarrow {(AB)^2} = 25{t^2} - 60t + 36 + 64\]
\[ \Rightarrow {(AB)^2} = {(5t - 6)^2} + 64\]..................... (i)
But we are finding the least distance between both persons. So, by applying \[AB \to min\] to equation (i)
$
\Rightarrow 5t - 6 = 0 \\
\Rightarrow t = \dfrac{6}{5} \\
\Rightarrow t = 1.2\sec \\
$
So, $t = 1.2\sec $ both persons are at the nearest distance from each other. Now, we get from equation (i)
$ \Rightarrow [{(5t - 6)^2} + 64] = {(AB)^2}$
Substituting $t = 1.2\sec $ in the above equation.
\[
\Rightarrow [{(5 \times 1.2 - 6)^2} + 64] = {(AB)^2} \\
\Rightarrow {(AB)^2} = [{(6 - 6)^2} + 64] \\
\Rightarrow {(AB)^2} = 64 \\
\Rightarrow AB = 8m \\
\]
Hence, $8m$ is the nearest distance between two persons.
Therefore, option (C) is correct.
Note: The nearest distance or least distance between two points is known as displacement. The limit is applied only for the time \[t\]. So, the limit will not be applied on other quantities.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Central Angle of a Circle Formula - Definition, Theorem and FAQs

Average Force Formula - Magnitude, Solved Examples and FAQs

Boyles Law Formula - Boyles Law Equation | Examples & Definitions

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
