
Two persons A and B are throwing an unbiased six faced die alternatively, with the condition that the person who throws $3$ first wins the game. If A starts the game, the probabilities of A and B to win the game are respectively
$\left( a \right)\dfrac{6}{{11}},\dfrac{5}{{11}}$
$\left( b \right)\dfrac{5}{{11}},\dfrac{6}{{11}}$
$\left( c \right)\dfrac{8}{{11}},\dfrac{3}{{11}}$
$\left( d \right)\dfrac{3}{{11}},\dfrac{8}{{11}}$
Answer
221.4k+ views
Hint: Use formula of sum of infinite geometric series $S = \dfrac{a}{{1 - r}}$
Winning the game is getting a $3$ on the die $p\left( {getting 3} \right) = \dfrac{1}{6}$ and $q\left( {not getting 3} \right) = \dfrac{5}{6}$
A wins if he gets $3$ on his first turn or he gets $3$ on his second turn but B does not get $3$ on his first turn and so on.
$
p\left( A \right) = p + p{q^2} + p{q^4} + ....... \\
\Rightarrow p\left( {1 + {q^2} + {q^4} + ........} \right) \\
$
We can see sum of infinite geometric series formed of common ratio $r = {q^2}$and first term $a = 1$ then sum of infinite geometric series is $S = \dfrac{a}{{1 - r}}$
$\left( {1 + {q^2} + {q^4} + ........} \right) = \dfrac{1}{{1 - {q^2}}}$
$
\Rightarrow p\left( {1 + {q^2} + {q^4} + ........} \right) \\
\Rightarrow p\left( {\dfrac{1}{{1 - {q^2}}}} \right) \\
\Rightarrow \dfrac{p}{{1 - {q^2}}} \\
\Rightarrow \dfrac{{\dfrac{1}{6}}}{{1 - {{\left( {\dfrac{5}{6}} \right)}^2}}} \Rightarrow \dfrac{6}{{11}} \\
p\left( A \right) = \dfrac{6}{{11}} \\
p\left( B \right) = 1 - p\left( A \right) = 1 - \dfrac{6}{{11}} \\
p\left( B \right) = \dfrac{5}{{11}} \\
$
Probability of A to win the game is $p\left( A \right) = \dfrac{6}{{11}}$ .
Probability of B to win the game is $p\left( B \right) = \dfrac{5}{{11}}$.
So, the correct option is (A).
Note: Whenever we come across these types of problems first find the probability of winning or losing the game in the first attempt but we know it is not possible to win the game in the first attempt. So, we try unless anyone is not winning the game then we use a sum of infinite geometric series.
Winning the game is getting a $3$ on the die $p\left( {getting 3} \right) = \dfrac{1}{6}$ and $q\left( {not getting 3} \right) = \dfrac{5}{6}$
A wins if he gets $3$ on his first turn or he gets $3$ on his second turn but B does not get $3$ on his first turn and so on.
$
p\left( A \right) = p + p{q^2} + p{q^4} + ....... \\
\Rightarrow p\left( {1 + {q^2} + {q^4} + ........} \right) \\
$
We can see sum of infinite geometric series formed of common ratio $r = {q^2}$and first term $a = 1$ then sum of infinite geometric series is $S = \dfrac{a}{{1 - r}}$
$\left( {1 + {q^2} + {q^4} + ........} \right) = \dfrac{1}{{1 - {q^2}}}$
$
\Rightarrow p\left( {1 + {q^2} + {q^4} + ........} \right) \\
\Rightarrow p\left( {\dfrac{1}{{1 - {q^2}}}} \right) \\
\Rightarrow \dfrac{p}{{1 - {q^2}}} \\
\Rightarrow \dfrac{{\dfrac{1}{6}}}{{1 - {{\left( {\dfrac{5}{6}} \right)}^2}}} \Rightarrow \dfrac{6}{{11}} \\
p\left( A \right) = \dfrac{6}{{11}} \\
p\left( B \right) = 1 - p\left( A \right) = 1 - \dfrac{6}{{11}} \\
p\left( B \right) = \dfrac{5}{{11}} \\
$
Probability of A to win the game is $p\left( A \right) = \dfrac{6}{{11}}$ .
Probability of B to win the game is $p\left( B \right) = \dfrac{5}{{11}}$.
So, the correct option is (A).
Note: Whenever we come across these types of problems first find the probability of winning or losing the game in the first attempt but we know it is not possible to win the game in the first attempt. So, we try unless anyone is not winning the game then we use a sum of infinite geometric series.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

JEE Main 2022 (July 26th Shift 1) Physics Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

Understanding Collisions: Types and Examples for Students

