
Two blocks are in contact on a frictionless table. One has mass m and the other 2m a force F is applied on 2m as shown in the figure. Now the same force F is applied from the right on m. In the two cases respectively, the ratio of the force of contact between the two blocks will be:
(A) same
(B) $1:2$
(C) $2:1$
(D) $1:3$
Answer
144k+ views
Hint Due to the force of contact both the masses will move together with the same acceleration. Force of contact acting between the two blocks will be the driving force for the movement for block m (when force is acting from the left side) and 2m (when force is acting from the right side).
Formula used: $F = ma$ where F is force, m is mass and a is acceleration
Complete Step-by-step solution
Let, case A be the case in which force is acting on the left side i.e. on block 2m and case B be the case in which force is acting on the right side i.e. on block m.
Due to the force of contact both the masses will move together with the same acceleration.
Hence,
$F = ma$ where F is force, m is mass and a is acceleration
Here, considering both the blocks as one system,
$F = 3ma$
$a = \dfrac{F}{{3m}}$
In case A force of contact will cause movement of the block of mass m.
In case B force of contact will cause movement of a block of mass 2m.
Let ${N_1}$ be the force of contact in case A and ${N_2}$ be the force of contact in case B.
We know that$F = ma$
So,

$ \Rightarrow {N_1} = m \times \dfrac{F}{{3m}}$
$ \Rightarrow {N_1} = \dfrac{F}{3}$
So,

$ \Rightarrow {N_2} = 2m \times \dfrac{F}{{3m}}$
$ \Rightarrow {N_2} = \dfrac{{2F}}{3}$
In the question they are asking ratio of ${N_1}$ to ${N_2}$ i.e. ${N_1}:{N_2}$ that is,
\[ \Rightarrow \dfrac{F}{3}:\dfrac{{2F}}{3}\]
$ \therefore 1:2$
$\therefore $ The correct answer is $(B) 1:2$
Note Above we solved considering the free body diagram of the body on which force of contact is acting but we can also solve it by considering the free body diagram of other body by balancing force on it and following $F = ma$where F is force, m is mass and a is acceleration
Formula used: $F = ma$ where F is force, m is mass and a is acceleration
Complete Step-by-step solution
Let, case A be the case in which force is acting on the left side i.e. on block 2m and case B be the case in which force is acting on the right side i.e. on block m.
Due to the force of contact both the masses will move together with the same acceleration.
Hence,
$F = ma$ where F is force, m is mass and a is acceleration
Here, considering both the blocks as one system,
$F = 3ma$
$a = \dfrac{F}{{3m}}$
In case A force of contact will cause movement of the block of mass m.
In case B force of contact will cause movement of a block of mass 2m.
Let ${N_1}$ be the force of contact in case A and ${N_2}$ be the force of contact in case B.
We know that$F = ma$
So,

$ \Rightarrow {N_1} = m \times \dfrac{F}{{3m}}$
$ \Rightarrow {N_1} = \dfrac{F}{3}$
So,

$ \Rightarrow {N_2} = 2m \times \dfrac{F}{{3m}}$
$ \Rightarrow {N_2} = \dfrac{{2F}}{3}$
In the question they are asking ratio of ${N_1}$ to ${N_2}$ i.e. ${N_1}:{N_2}$ that is,
\[ \Rightarrow \dfrac{F}{3}:\dfrac{{2F}}{3}\]
$ \therefore 1:2$
$\therefore $ The correct answer is $(B) 1:2$
Note Above we solved considering the free body diagram of the body on which force of contact is acting but we can also solve it by considering the free body diagram of other body by balancing force on it and following $F = ma$where F is force, m is mass and a is acceleration
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE

How Electromagnetic Waves are Formed - Important Concepts for JEE

Electrical Resistance - Important Concepts and Tips for JEE

Average Atomic Mass - Important Concepts and Tips for JEE

Chemical Equation - Important Concepts and Tips for JEE

Concept of CP and CV of Gas - Important Concepts and Tips for JEE

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry
