Twelve persons are to be arranged around two round tables such that one table can accommodate seven persons and another five persons only. Answer the following questions.
Number of ways in which these 12 persons can be arranged is
(a) $C_{5}^{12}6!4!$
(b) $6!4!$
(c) $C_{5}^{12}6!4!$
(d) None of these
Answer
Verified
116.1k+ views
There are two round tables such that one can accommodate seven persons and the other table will accommodate five persons.
Now we will find the number of ways five persons can be accommodated in second table out of twelve persons.
As any person can be selected out of \[12\] persons, so number of ways selecting \[5\]persons out of \[12\] persons is,
$C_{5}^{12}$
Now these \[5\] persons can accommodate any seat on the table with \[5\] seats, so number of ways \[5\] person can sit on \[5\] seats of second table is,
$\left( 5-1 \right)!=4!$
So the number of ways \[5\] persons can be accommodated in second table out of twelve persons is,
$C_{5}^{12}4!\ldots \ldots .\left( i \right)$
Once \[5\]persons sit on the second table, there are \[7\] persons left out of \[12\] persons.
So, the number of ways \[7\]persons can seat on first table with \[7\]seats is,
$\left( 7-1 \right)!=6!$
So, the number of ways in which the \[12\] persons can be arranged in two tables is,
$C_{5}^{12}4!\times 6!$
$\Rightarrow C_{5}^{12}6!4!$
Hence, the correct option for the given question is option (a) and (d).
Now we will find the number of ways five persons can be accommodated in second table out of twelve persons.
As any person can be selected out of \[12\] persons, so number of ways selecting \[5\]persons out of \[12\] persons is,
$C_{5}^{12}$
Now these \[5\] persons can accommodate any seat on the table with \[5\] seats, so number of ways \[5\] person can sit on \[5\] seats of second table is,
$\left( 5-1 \right)!=4!$
So the number of ways \[5\] persons can be accommodated in second table out of twelve persons is,
$C_{5}^{12}4!\ldots \ldots .\left( i \right)$
Once \[5\]persons sit on the second table, there are \[7\] persons left out of \[12\] persons.
So, the number of ways \[7\]persons can seat on first table with \[7\]seats is,
$\left( 7-1 \right)!=6!$
So, the number of ways in which the \[12\] persons can be arranged in two tables is,
$C_{5}^{12}4!\times 6!$
$\Rightarrow C_{5}^{12}6!4!$
Hence, the correct option for the given question is option (a) and (d).
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Physics Average Value and RMS Value JEE Main 2025
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs