
The vertical component of the velocity of the projectile at the half of maximum height is:
A) $3v{\text{ }}\sin \theta $
B) $v{\text{ }}\sin \theta $
C) $\dfrac{{v{\text{ }}\sin \theta }}{{\sqrt 2 }}$
D) $\dfrac{{v{\text{ }}\sin \theta }}{{\sqrt 3 }}$
Answer
231.9k+ views
Hint: An object that is in flight after being thrown or projected is called a projectile. Such a projectile might be a football, a cricket ball, a baseball or any other object. The motion of a projectile may be thought of as the result of two separate, simultaneously occurring components of motions. One component is along a horizontal direction without any acceleration and the other along the vertical direction with constant acceleration due to the force of gravity. It was Galileo who first stated this independence of the horizontal and the vertical components of projectile motion in his Dialogue on the Great World Systems (1632). The horizontal distance travelled by a projectile from its initial position to the position where it passes y = 0 during its fall is called the horizontal range, R.
Complete step by step solution:
Initial speed of the projectile = $v$
Angle of projectile = $\theta$
Vertical component of the initial velocity = $vsin \theta$
Horizontal component of the initial velocity = $vcos \theta$
Horizontal component of the final velocity = $vcos \theta$
At maximum height
$\Rightarrow {v_f} = 0$
By using third equation of motion, we get:
$\Rightarrow {v^2} - {u^2} = 2as$
$\Rightarrow {(0)^2} - {(vsin \theta )^2} = - 2gh$
$\therefore h = \dfrac{{{{(v{\text{ }}\sin \theta )}^2}}}{{2g}}$
$\Rightarrow {h_1} = \dfrac{h}{2}$
$\Rightarrow {h_1} = \dfrac{{{{(v{\text{ }}\sin \theta )}^2}}}{{4g}}$
By using the second equation of motion, we get;
$\Rightarrow {h_1} = ut + \dfrac{1}{2}a{t^2}$
$\Rightarrow \dfrac{{{{(v{\text{ }}\sin \theta )}^2}}}{{4g}} = v{\text{ }}\sin \theta \times t + \dfrac{1}{2}( - 10){t^2}$
$\Rightarrow 200{\text{ }}{t^2} - 40{\text{ }}r\sin \theta \times t + {v^2}{\sin ^2}\theta = 0$
$\Rightarrow t = \dfrac{{(\sqrt 2 - 1)v{\text{ }}\sin \theta }}{{10\sqrt 2 }}$
Vertical component of the velocity of the projectile is:
$\Rightarrow {v_y} = u + at$
$\Rightarrow {v_y} = v{\text{ }}\sin \theta - g\dfrac{{(\sqrt 2 - 1)v{\text{ }}\sin \theta }}{{10\sqrt 2 }}$
On solving the further equation, we get:
$\Rightarrow {v_y} = \dfrac{{v{\text{ }}\sin \theta }}{{\sqrt 2 }}.$
Therefore, option(C) is correct.
Note: An object that is in flight after being thrown or projected is called a projectile. Such a projectile might be a football, a cricket ball, a baseball or any other object. The motion of a projectile may be thought of as the result of two separate, simultaneously occurring components of motions. One component is along a horizontal direction without any acceleration and the other along the vertical direction with constant acceleration due to the force of gravity.
Complete step by step solution:
Initial speed of the projectile = $v$
Angle of projectile = $\theta$
Vertical component of the initial velocity = $vsin \theta$
Horizontal component of the initial velocity = $vcos \theta$
Horizontal component of the final velocity = $vcos \theta$
At maximum height
$\Rightarrow {v_f} = 0$
By using third equation of motion, we get:
$\Rightarrow {v^2} - {u^2} = 2as$
$\Rightarrow {(0)^2} - {(vsin \theta )^2} = - 2gh$
$\therefore h = \dfrac{{{{(v{\text{ }}\sin \theta )}^2}}}{{2g}}$
$\Rightarrow {h_1} = \dfrac{h}{2}$
$\Rightarrow {h_1} = \dfrac{{{{(v{\text{ }}\sin \theta )}^2}}}{{4g}}$
By using the second equation of motion, we get;
$\Rightarrow {h_1} = ut + \dfrac{1}{2}a{t^2}$
$\Rightarrow \dfrac{{{{(v{\text{ }}\sin \theta )}^2}}}{{4g}} = v{\text{ }}\sin \theta \times t + \dfrac{1}{2}( - 10){t^2}$
$\Rightarrow 200{\text{ }}{t^2} - 40{\text{ }}r\sin \theta \times t + {v^2}{\sin ^2}\theta = 0$
$\Rightarrow t = \dfrac{{(\sqrt 2 - 1)v{\text{ }}\sin \theta }}{{10\sqrt 2 }}$
Vertical component of the velocity of the projectile is:
$\Rightarrow {v_y} = u + at$
$\Rightarrow {v_y} = v{\text{ }}\sin \theta - g\dfrac{{(\sqrt 2 - 1)v{\text{ }}\sin \theta }}{{10\sqrt 2 }}$
On solving the further equation, we get:
$\Rightarrow {v_y} = \dfrac{{v{\text{ }}\sin \theta }}{{\sqrt 2 }}.$
Therefore, option(C) is correct.
Note: An object that is in flight after being thrown or projected is called a projectile. Such a projectile might be a football, a cricket ball, a baseball or any other object. The motion of a projectile may be thought of as the result of two separate, simultaneously occurring components of motions. One component is along a horizontal direction without any acceleration and the other along the vertical direction with constant acceleration due to the force of gravity.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Mass vs Weight: Key Differences Explained for Students

Uniform Acceleration Explained: Formula, Examples & Graphs

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

