
The vertical component of the velocity of the projectile at the half of maximum height is:
A) $3v{\text{ }}\sin \theta $
B) $v{\text{ }}\sin \theta $
C) $\dfrac{{v{\text{ }}\sin \theta }}{{\sqrt 2 }}$
D) $\dfrac{{v{\text{ }}\sin \theta }}{{\sqrt 3 }}$
Answer
137.1k+ views
Hint: An object that is in flight after being thrown or projected is called a projectile. Such a projectile might be a football, a cricket ball, a baseball or any other object. The motion of a projectile may be thought of as the result of two separate, simultaneously occurring components of motions. One component is along a horizontal direction without any acceleration and the other along the vertical direction with constant acceleration due to the force of gravity. It was Galileo who first stated this independence of the horizontal and the vertical components of projectile motion in his Dialogue on the Great World Systems (1632). The horizontal distance travelled by a projectile from its initial position to the position where it passes y = 0 during its fall is called the horizontal range, R.
Complete step by step solution:
Initial speed of the projectile = $v$
Angle of projectile = $\theta$
Vertical component of the initial velocity = $vsin \theta$
Horizontal component of the initial velocity = $vcos \theta$
Horizontal component of the final velocity = $vcos \theta$
At maximum height
$\Rightarrow {v_f} = 0$
By using third equation of motion, we get:
$\Rightarrow {v^2} - {u^2} = 2as$
$\Rightarrow {(0)^2} - {(vsin \theta )^2} = - 2gh$
$\therefore h = \dfrac{{{{(v{\text{ }}\sin \theta )}^2}}}{{2g}}$
$\Rightarrow {h_1} = \dfrac{h}{2}$
$\Rightarrow {h_1} = \dfrac{{{{(v{\text{ }}\sin \theta )}^2}}}{{4g}}$
By using the second equation of motion, we get;
$\Rightarrow {h_1} = ut + \dfrac{1}{2}a{t^2}$
$\Rightarrow \dfrac{{{{(v{\text{ }}\sin \theta )}^2}}}{{4g}} = v{\text{ }}\sin \theta \times t + \dfrac{1}{2}( - 10){t^2}$
$\Rightarrow 200{\text{ }}{t^2} - 40{\text{ }}r\sin \theta \times t + {v^2}{\sin ^2}\theta = 0$
$\Rightarrow t = \dfrac{{(\sqrt 2 - 1)v{\text{ }}\sin \theta }}{{10\sqrt 2 }}$
Vertical component of the velocity of the projectile is:
$\Rightarrow {v_y} = u + at$
$\Rightarrow {v_y} = v{\text{ }}\sin \theta - g\dfrac{{(\sqrt 2 - 1)v{\text{ }}\sin \theta }}{{10\sqrt 2 }}$
On solving the further equation, we get:
$\Rightarrow {v_y} = \dfrac{{v{\text{ }}\sin \theta }}{{\sqrt 2 }}.$
Therefore, option(C) is correct.
Note: An object that is in flight after being thrown or projected is called a projectile. Such a projectile might be a football, a cricket ball, a baseball or any other object. The motion of a projectile may be thought of as the result of two separate, simultaneously occurring components of motions. One component is along a horizontal direction without any acceleration and the other along the vertical direction with constant acceleration due to the force of gravity.
Complete step by step solution:
Initial speed of the projectile = $v$
Angle of projectile = $\theta$
Vertical component of the initial velocity = $vsin \theta$
Horizontal component of the initial velocity = $vcos \theta$
Horizontal component of the final velocity = $vcos \theta$
At maximum height
$\Rightarrow {v_f} = 0$
By using third equation of motion, we get:
$\Rightarrow {v^2} - {u^2} = 2as$
$\Rightarrow {(0)^2} - {(vsin \theta )^2} = - 2gh$
$\therefore h = \dfrac{{{{(v{\text{ }}\sin \theta )}^2}}}{{2g}}$
$\Rightarrow {h_1} = \dfrac{h}{2}$
$\Rightarrow {h_1} = \dfrac{{{{(v{\text{ }}\sin \theta )}^2}}}{{4g}}$
By using the second equation of motion, we get;
$\Rightarrow {h_1} = ut + \dfrac{1}{2}a{t^2}$
$\Rightarrow \dfrac{{{{(v{\text{ }}\sin \theta )}^2}}}{{4g}} = v{\text{ }}\sin \theta \times t + \dfrac{1}{2}( - 10){t^2}$
$\Rightarrow 200{\text{ }}{t^2} - 40{\text{ }}r\sin \theta \times t + {v^2}{\sin ^2}\theta = 0$
$\Rightarrow t = \dfrac{{(\sqrt 2 - 1)v{\text{ }}\sin \theta }}{{10\sqrt 2 }}$
Vertical component of the velocity of the projectile is:
$\Rightarrow {v_y} = u + at$
$\Rightarrow {v_y} = v{\text{ }}\sin \theta - g\dfrac{{(\sqrt 2 - 1)v{\text{ }}\sin \theta }}{{10\sqrt 2 }}$
On solving the further equation, we get:
$\Rightarrow {v_y} = \dfrac{{v{\text{ }}\sin \theta }}{{\sqrt 2 }}.$
Therefore, option(C) is correct.
Note: An object that is in flight after being thrown or projected is called a projectile. Such a projectile might be a football, a cricket ball, a baseball or any other object. The motion of a projectile may be thought of as the result of two separate, simultaneously occurring components of motions. One component is along a horizontal direction without any acceleration and the other along the vertical direction with constant acceleration due to the force of gravity.
Recently Updated Pages
COM of Semicircular Ring Important Concepts and Tips for JEE

Geostationary Satellites and Geosynchronous Satellites for JEE

Current Loop as Magnetic Dipole Important Concepts for JEE

Electromagnetic Waves Chapter for JEE Main Physics

Structure of Atom: Key Models, Subatomic Particles, and Quantum Numbers

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

At which height is gravity zero class 11 physics JEE_Main

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
