
The velocity of a body depends on time according to the equation v = 20 + 0.1${{t}^{2}}$. The body is undergoing
A. uniform acceleration
B. uniform retardation
C. non- uniform acceleration
D. zero acceleration
Answer
233.1k+ views
Hint: In this question, we are given the velocity and we have to find out in which acceleration body is going. We know the rate of change of velocity is acceleration. So first we differentiate the given equation and then with the help of relation of acceleration and time we find out in which acceleration the body is going and choose the option accordingly.
Formula used:
We use the formula of velocity:-
\[\text{velocity}=\dfrac{\text{change in displacement}}{\text{time taken}}\]
Complete step by step solution:
Velocity is the rate of change of displacement of a body.
\[\text{velocity}=\dfrac{\text{change in displacement}}{\text{time taken}} \\ \]
And the rate of change of velocity is called the acceleration of the body.
$a=\dfrac{{{v}_{2}}-{{v}_{1}}}{{{t}_{2}}-{{t}_{1}}} \\ $
That is $a=\dfrac{dv}{dt} \\ $
Given v = 20 + 0.1${{t}^{2}} \\ $
We know acceleration is differentiating velocity with time.
That is a = $\dfrac{dv}{dt} \\ $
Then a = $\dfrac{d(20+0.1{{t}^{2}})}{dt} \\ $
$\therefore a = 0.2 t$
From the above, it is clear that acceleration depends upon the time or we say that the speed of the particle changes by time. So, it is a non- uniform acceleration.
Thus, option C is the correct answer.
Note: If the body is under uniform acceleration, then there will be constant acceleration with changes in time. If the acceleration depends on time, then the acceleration increases with increase in time or it will decrease with the decrease in time.
Formula used:
We use the formula of velocity:-
\[\text{velocity}=\dfrac{\text{change in displacement}}{\text{time taken}}\]
Complete step by step solution:
Velocity is the rate of change of displacement of a body.
\[\text{velocity}=\dfrac{\text{change in displacement}}{\text{time taken}} \\ \]
And the rate of change of velocity is called the acceleration of the body.
$a=\dfrac{{{v}_{2}}-{{v}_{1}}}{{{t}_{2}}-{{t}_{1}}} \\ $
That is $a=\dfrac{dv}{dt} \\ $
Given v = 20 + 0.1${{t}^{2}} \\ $
We know acceleration is differentiating velocity with time.
That is a = $\dfrac{dv}{dt} \\ $
Then a = $\dfrac{d(20+0.1{{t}^{2}})}{dt} \\ $
$\therefore a = 0.2 t$
From the above, it is clear that acceleration depends upon the time or we say that the speed of the particle changes by time. So, it is a non- uniform acceleration.
Thus, option C is the correct answer.
Note: If the body is under uniform acceleration, then there will be constant acceleration with changes in time. If the acceleration depends on time, then the acceleration increases with increase in time or it will decrease with the decrease in time.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

