
The value of Boltzmann constant is: (In erg $K^{-1}$ molecul$e^{-1}$)
A. $1.38 \times \mathop {10}\nolimits^{ - 16}$
B. $1.38 \times \mathop {10}\nolimits^{ - 23}$
C. $8.314 \times \mathop {10}\nolimits^7$
D. $6.023 \times \mathop {10}\nolimits^{ - 16}$
Answer
216.6k+ views
Hint: It is a proportionality factor that relates average kinetic energy of particles in gas with thermodynamic temperature of gas.
Complete step by step solution:
It is known that Boltzmann constant ($k_b$), is a physical constant relating the average kinetic energy of particles in a gas with the temperature of the gas.
It is sort of a conversion type.
For simple ideal gases whose molecules are of mass m and have only kinetic energy, the Boltzmann constant k relates the average kinetic energy per molecule to the absolute temperature. The relationship can be given by: $\dfrac{{m{v^2}}}{2} = \dfrac{3}{2}kT$ where ${v^2}$ is the average of the squared velocity of gas molecules and $T$is the absolute temperature(in kelvin).
Also, it is the gas constant R divided by the Avogadro number NA : ${K_b} = \dfrac{R}{{{N_A}}}$.
Now we can calculate the value of Kb by using the formula: ${K_b} = \dfrac{R}{{{N_A}}}$
Calculation:
We know value of gas constant, $R = 8.3144J/K/mol$
Also, value of Avogadro number, ${N_A} = 6.02214 \times {10^{23}}$
Therefore, Boltzmann constant, ${K_b} = \dfrac{R}{{{N_A}}} = \dfrac{{8.3144}}{{6.02214 \times {{10}^{23}}}} = 1.3806 \times {10^{ - 23}}$ J/K/molecule
Now to convert the above calculated value of $K_b$ from J/K/molecule to erg $K^{-1}$ molecul$e^{-1}$, we have to multiply the above calculated value by 107:
${k_b} = \left( {1.3806 \times {{10}^{ - 23}}} \right)\left( {{{10}^7}} \right) = 1.3806 \times {10^{ - 16}}$ erg $K^{-1}$ molecul$e^{-1}$.
Hence, from above points we can now easily conclude that option A is the correct option.
Note: It should be remembered that Boltzmann constant is measured by measuring atomic speed of gas or speed of sound of gas. Also, one should remember the dimensional formula for Boltzmann’s constant which is ${M^2}{L^2}{T^{ - 2}}{\theta ^{ - 1}}$.
Complete step by step solution:
It is known that Boltzmann constant ($k_b$), is a physical constant relating the average kinetic energy of particles in a gas with the temperature of the gas.
It is sort of a conversion type.
For simple ideal gases whose molecules are of mass m and have only kinetic energy, the Boltzmann constant k relates the average kinetic energy per molecule to the absolute temperature. The relationship can be given by: $\dfrac{{m{v^2}}}{2} = \dfrac{3}{2}kT$ where ${v^2}$ is the average of the squared velocity of gas molecules and $T$is the absolute temperature(in kelvin).
Also, it is the gas constant R divided by the Avogadro number NA : ${K_b} = \dfrac{R}{{{N_A}}}$.
Now we can calculate the value of Kb by using the formula: ${K_b} = \dfrac{R}{{{N_A}}}$
Calculation:
We know value of gas constant, $R = 8.3144J/K/mol$
Also, value of Avogadro number, ${N_A} = 6.02214 \times {10^{23}}$
Therefore, Boltzmann constant, ${K_b} = \dfrac{R}{{{N_A}}} = \dfrac{{8.3144}}{{6.02214 \times {{10}^{23}}}} = 1.3806 \times {10^{ - 23}}$ J/K/molecule
Now to convert the above calculated value of $K_b$ from J/K/molecule to erg $K^{-1}$ molecul$e^{-1}$, we have to multiply the above calculated value by 107:
${k_b} = \left( {1.3806 \times {{10}^{ - 23}}} \right)\left( {{{10}^7}} \right) = 1.3806 \times {10^{ - 16}}$ erg $K^{-1}$ molecul$e^{-1}$.
Hence, from above points we can now easily conclude that option A is the correct option.
Note: It should be remembered that Boltzmann constant is measured by measuring atomic speed of gas or speed of sound of gas. Also, one should remember the dimensional formula for Boltzmann’s constant which is ${M^2}{L^2}{T^{ - 2}}{\theta ^{ - 1}}$.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

