
The solubility of \[{\rm{CdS}}{{\rm{O}}_4}\] in water is \[{\rm{8}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{ mol }}{{\rm{L}}^{{\rm{ - 1}}}}\] . Its solubility in \[{\rm{0}}{\rm{.01 M }}{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\] solution is _____________ \[{\rm{ \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}{\rm{ mol }}{{\rm{L}}^{{\rm{ - 1}}}}\]. (Round off to the nearest integer.)
Assume that solubility is much less than \[{\rm{0}}{\rm{.01 M}}\]
Answer
233.1k+ views
Hint: A solution is a homogeneous mixture of one or more solutes in a solvent. The concentration of a substance in a saturated solution (the maximum amount of solute that can be dissolved in a known quantity of solvent) is defined as its solubility (S). Its value depends upon the nature of the solvent and temperature.
Complete Step by Step Solution:
The solubility of \[{\rm{CdS}}{{\rm{O}}_4}\]in water = \[{\rm{8}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{ mol }}{{\rm{L}}^{{\rm{ - 1}}}}\]
According to the statement, we can write
The solubility product of an electrolyte at a specific temperature may be defined as the product of the molar concentration of its ions present in a saturated solution, each concentration raised to the power equal to the number of ions produced on the dissociating one molecule of the electrolyte. The more soluble a substance is, the higher the \[{{\rm{K}}_{{\rm{sp}}}}\]value it has.
Using the given data, we can write
\[\begin{array}{l}{\rm{S = 8 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = }}{{\rm{S}}^{\rm{2}}}{\rm{ = (8 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{{\rm{)}}^{\rm{2}}}\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = 64 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\end{array}\]\[\]
Solubility in \[{\rm{0}}{\rm{.01M }}{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}{\rm{:}}\]
Due to common ion effect of \[{\rm{S}}{{\rm{O}}_{\rm{4}}}^{{\rm{2 - }}}\] solubility of \[{\rm{CdS}}{{\rm{O}}_{\rm{4}}}\] is suppressed.
\[\begin{array}{l}{{\rm{K}}_{{\rm{sp}}}}{\rm{ = S (S + 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{) = 64 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\\{\rm{(S + 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{)}} \approx {\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = S \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ = 64 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = 64 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}\end{array}\]
Hence, \[{\rm{64}}\]is the correct answer. Solubility of \[{\rm{CdS}}{{\rm{O}}_{\rm{4}}}\]in \[{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\] solution is = \[{\rm{64 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}\]
Note: Calculating solution values from equilibrium conditions and solubility constants requires careful attention to the product and reactant definitions in the equation, and a properly balanced chemical reaction, where pertinent. Forgetting that solubility is relative to other substances leads to errors in stating whether something is soluble or not. Keep in mind what orders of magnitude of concentrations will result in precipitates or not, particularly in the presence of other compounds.
Use the relevant formula and calculate precisely.
Complete Step by Step Solution:
The solubility of \[{\rm{CdS}}{{\rm{O}}_4}\]in water = \[{\rm{8}}{\rm{.0 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{\rm{ mol }}{{\rm{L}}^{{\rm{ - 1}}}}\]
According to the statement, we can write
The solubility product of an electrolyte at a specific temperature may be defined as the product of the molar concentration of its ions present in a saturated solution, each concentration raised to the power equal to the number of ions produced on the dissociating one molecule of the electrolyte. The more soluble a substance is, the higher the \[{{\rm{K}}_{{\rm{sp}}}}\]value it has.
Using the given data, we can write
\[\begin{array}{l}{\rm{S = 8 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = }}{{\rm{S}}^{\rm{2}}}{\rm{ = (8 \times 1}}{{\rm{0}}^{{\rm{ - 4}}}}{{\rm{)}}^{\rm{2}}}\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = 64 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\end{array}\]\[\]
Solubility in \[{\rm{0}}{\rm{.01M }}{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}{\rm{:}}\]
Due to common ion effect of \[{\rm{S}}{{\rm{O}}_{\rm{4}}}^{{\rm{2 - }}}\] solubility of \[{\rm{CdS}}{{\rm{O}}_{\rm{4}}}\] is suppressed.
\[\begin{array}{l}{{\rm{K}}_{{\rm{sp}}}}{\rm{ = S (S + 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{) = 64 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\\{\rm{(S + 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{)}} \approx {\rm{1}}{{\rm{0}}^{{\rm{ - 2}}}}\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = S \times 1}}{{\rm{0}}^{{\rm{ - 2}}}}{\rm{ = 64 \times 1}}{{\rm{0}}^{{\rm{ - 8}}}}\\{{\rm{K}}_{{\rm{sp}}}}{\rm{ = 64 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}\end{array}\]
Hence, \[{\rm{64}}\]is the correct answer. Solubility of \[{\rm{CdS}}{{\rm{O}}_{\rm{4}}}\]in \[{{\rm{H}}_{\rm{2}}}{\rm{S}}{{\rm{O}}_{\rm{4}}}\] solution is = \[{\rm{64 \times 1}}{{\rm{0}}^{{\rm{ - 6}}}}\]
Note: Calculating solution values from equilibrium conditions and solubility constants requires careful attention to the product and reactant definitions in the equation, and a properly balanced chemical reaction, where pertinent. Forgetting that solubility is relative to other substances leads to errors in stating whether something is soluble or not. Keep in mind what orders of magnitude of concentrations will result in precipitates or not, particularly in the presence of other compounds.
Use the relevant formula and calculate precisely.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Organic Chemistry Some Basic Principles And Techniques Class 11 Chemistry Chapter 8 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reactions (2025-26)

