Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# The pressure exerted by a liquid at depth is given by

Last updated date: 06th Sep 2024
Total views: 78.3k
Views today: 1.78k
Verified
78.3k+ views
Hint We know that liquid exerts equal pressure in every direction of its container, independent of the shape of the container. As we know that any liquid exerts a pressure at a point depends on the density of the liquid and the vertical depth. So here, we are provided with the depth and the density of the container and hence we will find the pressure exerted by the liquid for getting the final result.

Complete step-by-step
Given, the depth at which pressure is exerted is h
As we know that any liquid exerts a pressure at a point depends on the density of the liquid and the vertical depth.
if we assume the liquid has a density = d
depth is given = h and the acceleration due to gravity is g.
The pressure exerted by liquid at depth is
\$P=h\ \ d\ \ g\$
Where, P is the pressure exerted by liquid
Hence pressure exerted by liquid = wdg.

Note The equation has general validity beyond the special conditions under which it is derived here. Even if the container were not there, the surrounding fluid would still exert this pressure, keeping the fluid static. Thus the equation P = hρg represents the pressure due to the weight of any fluid of average density ρ at any depth h below its surface. For liquids, which are nearly incompressible, this equation holds to great depths. For gases, which are quite compressible, one can apply this equation as long as the density changes are small over the depth considered.