The pressure exerted by a liquid at depth is given by
Answer
Verified
118.8k+ views
Hint We know that liquid exerts equal pressure in every direction of its container, independent of the shape of the container. As we know that any liquid exerts a pressure at a point depends on the density of the liquid and the vertical depth. So here, we are provided with the depth and the density of the container and hence we will find the pressure exerted by the liquid for getting the final result.
Complete step-by-step
Given, the depth at which pressure is exerted is h
As we know that any liquid exerts a pressure at a point depends on the density of the liquid and the vertical depth.
if we assume the liquid has a density = d
depth is given = h and the acceleration due to gravity is g.
The pressure exerted by liquid at depth is
$P=h\ \ d\ \ g$
Where, P is the pressure exerted by liquid
Hence pressure exerted by liquid = wdg.
Note The equation has general validity beyond the special conditions under which it is derived here. Even if the container were not there, the surrounding fluid would still exert this pressure, keeping the fluid static. Thus the equation P = hρg represents the pressure due to the weight of any fluid of average density ρ at any depth h below its surface. For liquids, which are nearly incompressible, this equation holds to great depths. For gases, which are quite compressible, one can apply this equation as long as the density changes are small over the depth considered.
Complete step-by-step
Given, the depth at which pressure is exerted is h
As we know that any liquid exerts a pressure at a point depends on the density of the liquid and the vertical depth.
if we assume the liquid has a density = d
depth is given = h and the acceleration due to gravity is g.
The pressure exerted by liquid at depth is
$P=h\ \ d\ \ g$
Where, P is the pressure exerted by liquid
Hence pressure exerted by liquid = wdg.
Note The equation has general validity beyond the special conditions under which it is derived here. Even if the container were not there, the surrounding fluid would still exert this pressure, keeping the fluid static. Thus the equation P = hρg represents the pressure due to the weight of any fluid of average density ρ at any depth h below its surface. For liquids, which are nearly incompressible, this equation holds to great depths. For gases, which are quite compressible, one can apply this equation as long as the density changes are small over the depth considered.
Recently Updated Pages
JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation
JEE Algebra Important Concepts and Tips for Exam Preparation
JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key
Geostationary Satellites and Geosynchronous Satellites for JEE
Complex Numbers - Important Concepts and Tips for JEE
JEE Main 2023 (February 1st Shift 2) Maths Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs