
The enthalpy change for the transition of liquid water to steam,\[{\Delta _{vap}}H = 37.3\]\[kJmo{l^{ - 1}}\]. The entropy change for the process is _________________.
A. 111.9\[Jmo{l^{ - 1}}{K^{ - 1}}\]
B. 37.3\[Jmo{l^{ - 1}}{K^{ - 1}}\]
C. 100\[Jmo{l^{ - 1}}{K^{ - 1}}\]
D. 74.6\[Jmo{l^{ - 1}}{K^{ - 1}}\]
Answer
162.6k+ views
Hint: Every physical or chemical process is accompanied by a change in enthalpy (\[\Delta H\]) and a change in entropy (\[\Delta S\]). If the process takes place at a constant temperature, then\[\Delta H\]and\[\Delta S\]follow a simple mathematical relation. Using that relation here will answer the question.
Formula used:
\[{\Delta _{vap}}S = \dfrac{{{\Delta _{vap}}H}}{{{T_b}}}\] … (1)
\[{\Delta _{vap}}S\] = change in entropy (Units: \[Jmo{l^{ - 1}}{K^{ - 1}}\] or \[kJmo{l^{ - 1}}{K^{ - 1}}\] )
\[{\Delta _{vap}}H\] = change in enthalpy (Units: \[Jmo{l^{ - 1}}\] or \[kJmo{l^{ - 1}}\] )
\[{T_b}\] = boiling point (Units: K)
Complete Step by Step Solution:
The enthalpy of a system (H) is a measure of the energy content of the system. During a physical or chemical process, as reactants convert into products or the physical state of a substance changes (which occurs during vaporisation), there occurs a change in the enthalpy associated with the process.
This change in the enthalpy (\[\Delta H\]) is given by the difference in the enthalpies of the products and the reactants.
\[\Delta H = {H_{products}} - {H_{reac\tan ts}}\]
In this instance, when liquid water is transitioning into steam, the change in enthalpy is the difference between the enthalpies of liquid water and steam as shown below:
\[{H_2}O(l) \to {H_2}O(g)\]
\[\Delta H = {H_{{H_2}O(l)}} - {H_{{H_2}O(g)}}\]
Since the transition of liquid water into steam is called vaporisation, the enthalpy change associated with this process is called the enthalpy of vaporisation (\[{\Delta _{vap}}H\]). \[{\Delta _{vap}}H\] simply indicates the amount of energy that will be required to convert a particular quantity/amount of water into water vapour.
Here, it is given that\[{\Delta _{vap}}H\]=37.3\[kJmo{l^{ - 1}}\] = 37300\[Jmo{l^{ - 1}}\] .
Since the temperature of the vaporisation process is not mentioned explicitly, we assume that the vaporisation is occurring at the boiling point of water which is 100 \[^\circ C\] or 373K. Thus, \[{T_b} = 373K\]
Plugging the values of\[{\Delta _{vap}}H\]and \[{T_b}\]of water in equation (1), we get:
\[{\Delta _{vap}}S = \dfrac{{{\Delta _{vap}}H}}{{{T_b}}}\]
\[ \Rightarrow {\Delta _{vap}}S = \dfrac{{37300Jmo{l^{ - 1}}}}{{373K}}\]
\[ \Rightarrow {\Delta _{vap}}S = 100\] \[Jmo{l^{ - 1}}{K^{ - 1}}\]
Thus, option C is correct.
Note: At the boiling point of water, liquid water is in equilibrium with water vapour. \[{H_2}O(l) \rightleftharpoons {H_2}O(g)\]. For an equilibrium condition, the change in Gibbs free energy (\[\Delta G\] ) = 0. We know that \[\Delta G\] is related to\[\Delta S\] as
\[\Delta G = \Delta H - T\Delta S\] .
For boiling of water, \[T = {T_b}\],\[\Delta H = {\Delta _{vap}}H\] and\[\Delta G = 0\] . Substituting these values in the above equation, we get:
\[{\Delta _{vap}}H - {T_b}{\Delta _{vap}}S = 0\]
\[ \Rightarrow {T_b}{\Delta _{vap}}S = {\Delta _{vap}}H\]
\[ \Rightarrow {\Delta _{vap}}S = \dfrac{{{\Delta _{vap}}H}}{{{T_b}}}\] . This is how equation (1) was derived.
Formula used:
\[{\Delta _{vap}}S = \dfrac{{{\Delta _{vap}}H}}{{{T_b}}}\] … (1)
\[{\Delta _{vap}}S\] = change in entropy (Units: \[Jmo{l^{ - 1}}{K^{ - 1}}\] or \[kJmo{l^{ - 1}}{K^{ - 1}}\] )
\[{\Delta _{vap}}H\] = change in enthalpy (Units: \[Jmo{l^{ - 1}}\] or \[kJmo{l^{ - 1}}\] )
\[{T_b}\] = boiling point (Units: K)
Complete Step by Step Solution:
The enthalpy of a system (H) is a measure of the energy content of the system. During a physical or chemical process, as reactants convert into products or the physical state of a substance changes (which occurs during vaporisation), there occurs a change in the enthalpy associated with the process.
This change in the enthalpy (\[\Delta H\]) is given by the difference in the enthalpies of the products and the reactants.
\[\Delta H = {H_{products}} - {H_{reac\tan ts}}\]
In this instance, when liquid water is transitioning into steam, the change in enthalpy is the difference between the enthalpies of liquid water and steam as shown below:
\[{H_2}O(l) \to {H_2}O(g)\]
\[\Delta H = {H_{{H_2}O(l)}} - {H_{{H_2}O(g)}}\]
Since the transition of liquid water into steam is called vaporisation, the enthalpy change associated with this process is called the enthalpy of vaporisation (\[{\Delta _{vap}}H\]). \[{\Delta _{vap}}H\] simply indicates the amount of energy that will be required to convert a particular quantity/amount of water into water vapour.
Here, it is given that\[{\Delta _{vap}}H\]=37.3\[kJmo{l^{ - 1}}\] = 37300\[Jmo{l^{ - 1}}\] .
Since the temperature of the vaporisation process is not mentioned explicitly, we assume that the vaporisation is occurring at the boiling point of water which is 100 \[^\circ C\] or 373K. Thus, \[{T_b} = 373K\]
Plugging the values of\[{\Delta _{vap}}H\]and \[{T_b}\]of water in equation (1), we get:
\[{\Delta _{vap}}S = \dfrac{{{\Delta _{vap}}H}}{{{T_b}}}\]
\[ \Rightarrow {\Delta _{vap}}S = \dfrac{{37300Jmo{l^{ - 1}}}}{{373K}}\]
\[ \Rightarrow {\Delta _{vap}}S = 100\] \[Jmo{l^{ - 1}}{K^{ - 1}}\]
Thus, option C is correct.
Note: At the boiling point of water, liquid water is in equilibrium with water vapour. \[{H_2}O(l) \rightleftharpoons {H_2}O(g)\]. For an equilibrium condition, the change in Gibbs free energy (\[\Delta G\] ) = 0. We know that \[\Delta G\] is related to\[\Delta S\] as
\[\Delta G = \Delta H - T\Delta S\] .
For boiling of water, \[T = {T_b}\],\[\Delta H = {\Delta _{vap}}H\] and\[\Delta G = 0\] . Substituting these values in the above equation, we get:
\[{\Delta _{vap}}H - {T_b}{\Delta _{vap}}S = 0\]
\[ \Rightarrow {T_b}{\Delta _{vap}}S = {\Delta _{vap}}H\]
\[ \Rightarrow {\Delta _{vap}}S = \dfrac{{{\Delta _{vap}}H}}{{{T_b}}}\] . This is how equation (1) was derived.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Types of Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained
