
The direction of induced current in the coils A and B in the situation shown in the figure is then:

A) p to q in coil A and x to y in coil B
B) q to p in coil A and x to y in coil B
C) p to q in coil A and y to x in coil B
D) q to p in coil A and y to x in coil B
Answer
216.3k+ views
Hint: A current can be induced in a current loop if it is exposed to a changing magnetic field. Induced current always opposes the cause of it according to Lenz's law.
Complete step by step solution: The direction of the current can be determined by considering Lenz's law, which states that an induced electric current will flow in such a way that it creates a magnetic field that resists change in the field it produces. In other words, if the applied magnetic field continues to increase, the current flowing in the wire will flow in such a way that the magnetic field generated around the wire will decrease the applied magnetic field.
Here in the given figure In coil A, the south pole develops in Q and in coil B also the south pole develops in X. Thus, the current flowing in coil A will be from Q to P and the current flowing in coil B will be from x to y.
Additional Information: In 1831, Michael Faraday conducted several experiments in an attempt to prove that electricity could be produced by magnetism. Within a few weeks, the great experimenter not only explicitly demonstrated this phenomenon, now known as electromagnetic induction.
Note: A current can be induced in conducting loop,If it comes in contact with a changed magnetic field, This change can happen in a variety of ways; You can change the strength of the magnetic field, move the conductor in and out of the field, change the distance between the magnet and the conductor, or change the field of the loop located in a constant magnetic field. Considering how the variant is obtained, the result, the transmitted current, is the same.
Complete step by step solution: The direction of the current can be determined by considering Lenz's law, which states that an induced electric current will flow in such a way that it creates a magnetic field that resists change in the field it produces. In other words, if the applied magnetic field continues to increase, the current flowing in the wire will flow in such a way that the magnetic field generated around the wire will decrease the applied magnetic field.
Here in the given figure In coil A, the south pole develops in Q and in coil B also the south pole develops in X. Thus, the current flowing in coil A will be from Q to P and the current flowing in coil B will be from x to y.
Additional Information: In 1831, Michael Faraday conducted several experiments in an attempt to prove that electricity could be produced by magnetism. Within a few weeks, the great experimenter not only explicitly demonstrated this phenomenon, now known as electromagnetic induction.
Note: A current can be induced in conducting loop,If it comes in contact with a changed magnetic field, This change can happen in a variety of ways; You can change the strength of the magnetic field, move the conductor in and out of the field, change the distance between the magnet and the conductor, or change the field of the loop located in a constant magnetic field. Considering how the variant is obtained, the result, the transmitted current, is the same.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

