
The density of water at \[20^\circ C\] is \[998kg/{m^3}\] and at \[40^\circ C\] is \[992kg/{m^3}\]. The coefficient of volume expansion of water is
(A) \[{10^{ - 4}}/^\circ C\]
(B) \[3 \times {10^{ - 4}}/^\circ C\]
(C) \[2 \times {10^{ - 4}}/^\circ C\]
(D) \[6 \times {10^{ - 4}}/^\circ C\]
Answer
172.2k+ views
Hint: Density of a given substance is inversely proportional to the volume of the substance. The volume at lower temperature is used to calculate the coefficient of volume expansion.
Formula used: In this solution we will be using the following formulae;
$\Rightarrow$ \[\gamma = \dfrac{{\Delta V}}{{{V_i}\Delta T}}\] where \[\gamma \] is the coefficient of volume expansion, \[\Delta V\] is the change in volume from initial temperature to final temperature, and \[{V_i}\] is the initial volume (or volume at the lower temperature), and \[\Delta T\] is the change in temperature.
$\Rightarrow$ \[V = \dfrac{m}{\rho }\] where \[V\] is volume, \[m\] is mass and \[\rho \] is density.
Complete Step-by-Step Solution:
To calculate the coefficient of volume expansion of water, we recall the formula
$\Rightarrow$ \[\gamma = \dfrac{{\Delta V}}{{{V_i}\Delta T}}\] where \[\gamma \] is the coefficient of volume expansion, \[\Delta V\] is the change in volume from initial temperature to final temperature, and \[{V_i}\] is the initial volume (or volume at the lower temperature), and \[\Delta T\] is the change in temperature.
But \[V = \dfrac{m}{\rho }\] where \[m\] is mass and \[\rho \] is density.
Hence,
$\Rightarrow$ \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\]
Hence,
$\Rightarrow$ \[\gamma = \dfrac{{ - \Delta \rho }}{{{\rho _i}\Delta T}}\]
Hence, by inserting known values we have
$\Rightarrow$ \[\gamma = \dfrac{{ - \left( {992 - 998} \right)}}{{992\left( {40 - 20} \right)}}\]
Hence, by computation,
$\Rightarrow$ \[\gamma = \dfrac{6}{{992\left( {20} \right)}} = 3 \times {10^{ - 4}}/^\circ C\]
Hence, the correct option is B
Note: For clarity, the relationship \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\] can be gotten from \[V = \dfrac{m}{\rho }\] as follows,
We first differentiate the volume with respect to the density, we have
$\Rightarrow$ \[\dfrac{{dV}}{{d\rho }} = - \dfrac{m}{{{\rho ^2}}}\]
Then by multiplying both sides by \[d\rho \] and rewriting the equation, we have
$\Rightarrow$ \[dV = - \dfrac{m}{\rho }\dfrac{{d\rho }}{\rho }\]
Now, since \[\dfrac{m}{\rho } = V\], then by substituting into the equation above, we have
\[dV = - V\dfrac{{d\rho }}{\rho }\]
Then,
$\Rightarrow$ \[\dfrac{{dV}}{V} = - \dfrac{{d\rho }}{\rho }\]
Hence, \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\]
Also, note that in the formula for coefficient of expansion, the volume at the lower temperature (initial volume) is used. Mistakes are often made when it concerns cooling, that students often use the initial volume as the volume at the hotter temperature (because it’s initial in terms of cooling). Nonetheless, because the coefficient of expansion is being measured, it must be taken as though it was being heated.
Formula used: In this solution we will be using the following formulae;
$\Rightarrow$ \[\gamma = \dfrac{{\Delta V}}{{{V_i}\Delta T}}\] where \[\gamma \] is the coefficient of volume expansion, \[\Delta V\] is the change in volume from initial temperature to final temperature, and \[{V_i}\] is the initial volume (or volume at the lower temperature), and \[\Delta T\] is the change in temperature.
$\Rightarrow$ \[V = \dfrac{m}{\rho }\] where \[V\] is volume, \[m\] is mass and \[\rho \] is density.
Complete Step-by-Step Solution:
To calculate the coefficient of volume expansion of water, we recall the formula
$\Rightarrow$ \[\gamma = \dfrac{{\Delta V}}{{{V_i}\Delta T}}\] where \[\gamma \] is the coefficient of volume expansion, \[\Delta V\] is the change in volume from initial temperature to final temperature, and \[{V_i}\] is the initial volume (or volume at the lower temperature), and \[\Delta T\] is the change in temperature.
But \[V = \dfrac{m}{\rho }\] where \[m\] is mass and \[\rho \] is density.
Hence,
$\Rightarrow$ \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\]
Hence,
$\Rightarrow$ \[\gamma = \dfrac{{ - \Delta \rho }}{{{\rho _i}\Delta T}}\]
Hence, by inserting known values we have
$\Rightarrow$ \[\gamma = \dfrac{{ - \left( {992 - 998} \right)}}{{992\left( {40 - 20} \right)}}\]
Hence, by computation,
$\Rightarrow$ \[\gamma = \dfrac{6}{{992\left( {20} \right)}} = 3 \times {10^{ - 4}}/^\circ C\]
Hence, the correct option is B
Note: For clarity, the relationship \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\] can be gotten from \[V = \dfrac{m}{\rho }\] as follows,
We first differentiate the volume with respect to the density, we have
$\Rightarrow$ \[\dfrac{{dV}}{{d\rho }} = - \dfrac{m}{{{\rho ^2}}}\]
Then by multiplying both sides by \[d\rho \] and rewriting the equation, we have
$\Rightarrow$ \[dV = - \dfrac{m}{\rho }\dfrac{{d\rho }}{\rho }\]
Now, since \[\dfrac{m}{\rho } = V\], then by substituting into the equation above, we have
\[dV = - V\dfrac{{d\rho }}{\rho }\]
Then,
$\Rightarrow$ \[\dfrac{{dV}}{V} = - \dfrac{{d\rho }}{\rho }\]
Hence, \[\dfrac{{\Delta V}}{V} = - \dfrac{{\Delta \rho }}{\rho }\]
Also, note that in the formula for coefficient of expansion, the volume at the lower temperature (initial volume) is used. Mistakes are often made when it concerns cooling, that students often use the initial volume as the volume at the hotter temperature (because it’s initial in terms of cooling). Nonetheless, because the coefficient of expansion is being measured, it must be taken as though it was being heated.
Recently Updated Pages
Sets, Relations, and Functions Mock Test 2025-26

Molarity vs Molality: Definitions, Formulas & Key Differences

Preparation of Hydrogen Gas: Methods & Uses Explained

Polymers in Chemistry: Definition, Types, Examples & Uses

P Block Elements: Definition, Groups, Trends & Properties for JEE/NEET

Order of Reaction in Chemistry: Definition, Formula & Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Displacement-Time Graph and Velocity-Time Graph for JEE

Uniform Acceleration

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
NCERT Solutions For Class 11 Physics Chapter 1 Units and Measurements - 2025-26

NCERT Solutions For Class 11 Physics Chapter 2 Motion In A Straight Line - 2025-26

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

CBSE Important Questions for Class 11 Physics Units and Measurement - 2025-26
