
The degrees of freedom of a diatomic gas at normal temperature is:
A) $3$
B) $4$
C) $5$
D) $6$
Answer
137.4k+ views
Hint: The degrees of freedom is the change in the state of the physical system or of the motion exhibited by the particular molecule which is located in a particular space. It varies for the monatomic, diatomic and the triatomic molecules.
Complete step by step solution:
The movement of the particle in the three dimensional space constitutes the three degrees of freedom. In the diatomic molecule, the whole molecule exhibits three degrees of freedom due to its centre of mass and also has another three degrees of freedom. These diatomic sets have been decomposed mainly in terms of the translation, vibration and the rotation of the molecule.

A single diatomic molecule has two rotational types of the motion and one vibrational type of the motion. In the diatomic molecule, the rotation takes place perpendicular to that of the axis joining the two atoms but it is not a physical degree of the rotation. Hence the degrees of freedom of the diatomic molecule is $6$ , but the vibration does not take place at the normal temperature. Hence the total number of the degree of freedom is calculated as follows.
$f = 3 + 2$
By adding the above degrees of freedom,
$f = 5$
Hence the degrees of freedom obtained for a diatomic gas molecule at a normal temperature is $5$ .
Thus the option (C) is correct.
Note: If the $N$ is the number of gas molecules in the container, hence the degrees of freedom is $f = 3N$ . If there occur any restrictions of the motion of the gas molecules and it is considered as $q$, then the degrees of freedom becomes $f = 3N - q$.
Complete step by step solution:
The movement of the particle in the three dimensional space constitutes the three degrees of freedom. In the diatomic molecule, the whole molecule exhibits three degrees of freedom due to its centre of mass and also has another three degrees of freedom. These diatomic sets have been decomposed mainly in terms of the translation, vibration and the rotation of the molecule.

A single diatomic molecule has two rotational types of the motion and one vibrational type of the motion. In the diatomic molecule, the rotation takes place perpendicular to that of the axis joining the two atoms but it is not a physical degree of the rotation. Hence the degrees of freedom of the diatomic molecule is $6$ , but the vibration does not take place at the normal temperature. Hence the total number of the degree of freedom is calculated as follows.
$f = 3 + 2$
By adding the above degrees of freedom,
$f = 5$
Hence the degrees of freedom obtained for a diatomic gas molecule at a normal temperature is $5$ .
Thus the option (C) is correct.
Note: If the $N$ is the number of gas molecules in the container, hence the degrees of freedom is $f = 3N$ . If there occur any restrictions of the motion of the gas molecules and it is considered as $q$, then the degrees of freedom becomes $f = 3N - q$.
Recently Updated Pages
COM of Semicircular Ring Important Concepts and Tips for JEE

Geostationary Satellites and Geosynchronous Satellites for JEE

Current Loop as Magnetic Dipole Important Concepts for JEE

Electromagnetic Waves Chapter for JEE Main Physics

Structure of Atom: Key Models, Subatomic Particles, and Quantum Numbers

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
A body crosses the topmost point of a vertical circle class 11 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

At which height is gravity zero class 11 physics JEE_Main

Physics Average Value and RMS Value JEE Main 2025

Collision - Important Concepts and Tips for JEE

Elastic Collisions in One Dimension - JEE Important Topic

Other Pages
Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Waves Class 11 Notes: CBSE Physics Chapter 14

NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

JEE Advanced 2025 Notes

The position vectors of the points A and B with respect class 11 physics JEE_Main
