
Solve the following equation:
${\log _{16}}x + {\log _4}x + {\log _2}x = 7$
Answer
232.8k+ views
Hint: We have to use the necessary logarithmic properties to find the value of x.
Complete step-by-step answer:
It is given to us that ${\log _{16}}x + {\log _4}x + {\log _2}x = 7$
We know that $\left[ {\because {{\log }_a}b = \dfrac{1}{{{{\log }_b}a}}} \right]$
So, we will get
$\Rightarrow \dfrac{1}{{{{\log }_x}16}} + \dfrac{1}{{{{\log }_x}4}} + \dfrac{1}{{{{\log }_x}2}} = 7$
On simplification, we get
$\Rightarrow \dfrac{1}{{{{\log }_x}{2^4}}} + \dfrac{1}{{{{\log }_x}{2^2}}} + \dfrac{1}{{{{\log }_x}2}} = 7$
Now since we know that $\left[ {\because n{{\log }_a}M = {{\log }_a}{M^n}} \right]$
And hence on following the above formula we have,
$ \Rightarrow \dfrac{1}{{4{{\log }_x}2}} + \dfrac{1}{{2{{\log }_x}2}} + \dfrac{1}{{{{\log }_x}2}} = 7$
And hence on taking $\dfrac{1}{{{{\log }_x}2}}$ common, we get,
$\left[ {\dfrac{1}{4} + \dfrac{1}{2} + 1} \right]\dfrac{1}{{{{\log }_x}2}} = 7$
And hence on doing the simplification, we have
$\left[ {\dfrac{7}{4}} \right]\dfrac{1}{{{{\log }_x}2}} = 7$
$ \Rightarrow \dfrac{1}{{{{\log }_x}2}} = 7 \times \left[ {\dfrac{4}{7}} \right]$
Here 7 will get cancelled out
\[\Rightarrow {\log _2}x = 4\] $\left[ {\because {{\log }_a}b = \dfrac{1}{{{{\log }_b}a}}} \right]$
$\Rightarrow {2^4} = x$
$\Rightarrow x = 16 $
Note: This question consists of equations comprising logarithmic functions. So we just need to use the appropriate logarithmic properties. Mistakes should be avoided in application of these properties.
Complete step-by-step answer:
It is given to us that ${\log _{16}}x + {\log _4}x + {\log _2}x = 7$
We know that $\left[ {\because {{\log }_a}b = \dfrac{1}{{{{\log }_b}a}}} \right]$
So, we will get
$\Rightarrow \dfrac{1}{{{{\log }_x}16}} + \dfrac{1}{{{{\log }_x}4}} + \dfrac{1}{{{{\log }_x}2}} = 7$
On simplification, we get
$\Rightarrow \dfrac{1}{{{{\log }_x}{2^4}}} + \dfrac{1}{{{{\log }_x}{2^2}}} + \dfrac{1}{{{{\log }_x}2}} = 7$
Now since we know that $\left[ {\because n{{\log }_a}M = {{\log }_a}{M^n}} \right]$
And hence on following the above formula we have,
$ \Rightarrow \dfrac{1}{{4{{\log }_x}2}} + \dfrac{1}{{2{{\log }_x}2}} + \dfrac{1}{{{{\log }_x}2}} = 7$
And hence on taking $\dfrac{1}{{{{\log }_x}2}}$ common, we get,
$\left[ {\dfrac{1}{4} + \dfrac{1}{2} + 1} \right]\dfrac{1}{{{{\log }_x}2}} = 7$
And hence on doing the simplification, we have
$\left[ {\dfrac{7}{4}} \right]\dfrac{1}{{{{\log }_x}2}} = 7$
$ \Rightarrow \dfrac{1}{{{{\log }_x}2}} = 7 \times \left[ {\dfrac{4}{7}} \right]$
Here 7 will get cancelled out
\[\Rightarrow {\log _2}x = 4\] $\left[ {\because {{\log }_a}b = \dfrac{1}{{{{\log }_b}a}}} \right]$
$\Rightarrow {2^4} = x$
$\Rightarrow x = 16 $
Note: This question consists of equations comprising logarithmic functions. So we just need to use the appropriate logarithmic properties. Mistakes should be avoided in application of these properties.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

