
Solve $\int_{-2}^{2}|1-x^{2}\lvert.\text{d}x$ [IIT 1989; BIT Mesra 1996; Kurukshetra CEE 1998; MP PET 2002; Kerala (Engg.) 2002]
(A) 2
(B) 4
(C) 6
(D) 8
Answer
219k+ views
Hint: Integration means adding smaller functions to create a larger one. It is the inverse of differentiation, so it is also known as anti differentiation. Integrals with no integration limit are known as indefinite integrals. Integrals with an upper and lower limit are said to be definite integrals.
Complete step by step solution:The given integral is I = $\int_{-2}^{2}|1-x^{2}\lvert.\text{d}x$
Here the given function is f(x) = $\|1-x^{2}\lvert$ and the total range over which the integral is to be done is -2 to 2, with a lower limit of -2 and an upper limit of 2. We observe that the value of this function is negative in the range of -2 to -1, positive in the range of -1 to 1, and again negative in the range of 1 to 2.
So, the above integral can be written as
I = $-\int_{-2}^{-1}(1-x^{2}).\text{d}x+\int_{-1}^{1}(1-x^{2}).\text{d}x-\int_{1}^{2}(1-x^{2}).\text{d}x$
I = $-\left[x-\dfrac{x^3}{3}\right]_{-2}^{-1}+\left[x-\dfrac{x^3}{3}\right]_{-1}^{1}-\left[x-\dfrac{x^3}{3}\right]_{1}^{2}$
I = $-((-1)-\dfrac{-1^3}{3}-((-2)-\dfrac{-2^3}{3}))+((1)-\dfrac{1^3}{3}-((-1)-\dfrac{-1^3}{3})+((2)-\dfrac{2^3}{3}-((1)-\dfrac{1^3}{3}))$
I = $-(-1+\dfrac{1}{3}+2-\dfrac{8}{3})+(1-\dfrac{1}{3}+1-\dfrac{1}{3})-(2-\dfrac{8}{3}-1+\dfrac{1}{3})$
I = $\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{4}{3}$
I = 4
Hence, the integration of $\|1-x^{2}\lvert$over the range of -2 to 2 is 4.
Option ‘B’ is correct
Note: The integration should be done carefully. Integration can be applied in daily life. It is used in chemistry to study radioactive decay reactions. It can be used to calculate the velocity and trajectory of the object. It is also used to calculate the centre of mass, centre of gravity, mass, and momentum of the satellites.
Complete step by step solution:The given integral is I = $\int_{-2}^{2}|1-x^{2}\lvert.\text{d}x$
Here the given function is f(x) = $\|1-x^{2}\lvert$ and the total range over which the integral is to be done is -2 to 2, with a lower limit of -2 and an upper limit of 2. We observe that the value of this function is negative in the range of -2 to -1, positive in the range of -1 to 1, and again negative in the range of 1 to 2.
So, the above integral can be written as
I = $-\int_{-2}^{-1}(1-x^{2}).\text{d}x+\int_{-1}^{1}(1-x^{2}).\text{d}x-\int_{1}^{2}(1-x^{2}).\text{d}x$
I = $-\left[x-\dfrac{x^3}{3}\right]_{-2}^{-1}+\left[x-\dfrac{x^3}{3}\right]_{-1}^{1}-\left[x-\dfrac{x^3}{3}\right]_{1}^{2}$
I = $-((-1)-\dfrac{-1^3}{3}-((-2)-\dfrac{-2^3}{3}))+((1)-\dfrac{1^3}{3}-((-1)-\dfrac{-1^3}{3})+((2)-\dfrac{2^3}{3}-((1)-\dfrac{1^3}{3}))$
I = $-(-1+\dfrac{1}{3}+2-\dfrac{8}{3})+(1-\dfrac{1}{3}+1-\dfrac{1}{3})-(2-\dfrac{8}{3}-1+\dfrac{1}{3})$
I = $\dfrac{4}{3}+\dfrac{4}{3}+\dfrac{4}{3}$
I = 4
Hence, the integration of $\|1-x^{2}\lvert$over the range of -2 to 2 is 4.
Option ‘B’ is correct
Note: The integration should be done carefully. Integration can be applied in daily life. It is used in chemistry to study radioactive decay reactions. It can be used to calculate the velocity and trajectory of the object. It is also used to calculate the centre of mass, centre of gravity, mass, and momentum of the satellites.
Recently Updated Pages
In a game two players A and B take turns in throwing class 12 maths JEE_Main

The number of ways in which 6 men and 5 women can dine class 12 maths JEE_Main

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

