
Solve $\dfrac{{\left( {1 - \tan 2^\circ \cot 62^\circ } \right) }}{{\left( {\tan 152^\circ - \cot 88^\circ } \right)}} = $
A. $\sqrt 3 $
B. $ - \sqrt 3 $
C. $\sqrt 2 - 1$
D. $1 - \sqrt 2 $
Answer
161.7k+ views
Hint: To solve this question, we need to observe the given equation and then try to convert all the trigonometric functions into a single function like converting \cotangent into \tangent function after that we simplify it with the help of trigonometric identities and find our solution.
Formula Used:
1. $\tan \left( {90 - \theta } \right) = \cot \theta $
2. $\tan \left( {90 + \theta } \right) = - \cot \theta $
3. $\cot \left( {x + y} \right) = \dfrac{{\cot x\cot y - 1}}{{\cot x + \cot y}}$
4. $\cot \left( {90 + \theta } \right) = - \tan \theta $
Complete step by step solution:
We need to find the value of $\dfrac{{\left( {1 - \tan 2^\circ \cot 62^\circ } \right) }}{{\left( {\tan 152^\circ - \cot 88^\circ } \right)}}$
Now, we write the given equation as
$\dfrac{{\left( {1 - \tan 2^\circ \cot 62^\circ } \right) }}{{\left( {\tan 152^\circ - \cot 88^\circ } \right)}} = \dfrac{{\left( {1 - \tan \left( {{{90}^\circ} - {{88}^\circ}} \right)\cot {{62}^\circ}} \right)}}{{\left( {\tan \left( {{{90}^\circ} + {{62}^\circ}} \right) - \cot {{88}^\circ}} \right)}}$
Now by applying the formula
$\tan \left( {90 - \theta } \right) = \cot \theta \\ \tan \left( {90 + \theta } \right) = - \cot \theta $
We get
$\dfrac{{\left( {1 - \tan \left( {{{90}^\circ} - {{88}^\circ}} \right)\cot {{62}^\circ}} \right)}}{{\left( {\tan \left( {{{90}^\circ} + {{62}^\circ}} \right) - \cot {{88}^\circ}} \right)}} = \dfrac{{1 - \cot {{88}^\circ}\cot {{62}^\circ}}}{{\cot {{62}^\circ}\cot {{88}^\circ}}}$
Now we apply the formula $\cot \left( {x + y} \right) = \dfrac{{\cot x\cot y - 1}}{{\cot x + \cot y}}$ in the above equation, we get
$\dfrac{{1 - \cot {{88}^\circ}\cot {{62}^\circ}}}{{\cot {{62}^\circ}\cot {{88}^\circ}}} = \cot \left( {{{88}^\circ} + {{62}^\circ}} \right)$
Further solving, we get
$\cot \left( {{{88}^\circ} + {{62}^\circ}} \right) = \cot \left( {{{150}^\circ}} \right)$
$\cot \left( {{{150}^\circ}} \right) = \cot \left( {{{90}^\circ} + {{60}^\circ}} \right)$
Now by applying the formula $\cot \left( {90 + \theta } \right) = - \tan \theta $, we get
$\cot \left( {{{90}^\circ} + {{60}^\circ}} \right) = - \tan {60^\circ}$
(We know that $\tan {60^\circ} = \sqrt 3 $)
So, $ - \tan {60^\circ} = \sqrt 3 $ or $\tan {60^\circ} = - \sqrt 3 $
Therefore, the solution of $\dfrac{{\left( {1 - \tan 2^\circ \cot 62^\circ } \right) }}{{\left( {\tan 152^\circ - \cot 88^\circ } \right)}}$is $ - \sqrt 3 $.
Option ‘B’ is correct
Note: The interesting fact here is to convert $\tan$ to $\cot$ by using a complementary rule that is $\tan (90 – \theta) = \cot \theta$ and $\tan (90 + \theta) = − \cot \theta$ later use the expansion of $\cot (A \pm B)$.
Formula Used:
1. $\tan \left( {90 - \theta } \right) = \cot \theta $
2. $\tan \left( {90 + \theta } \right) = - \cot \theta $
3. $\cot \left( {x + y} \right) = \dfrac{{\cot x\cot y - 1}}{{\cot x + \cot y}}$
4. $\cot \left( {90 + \theta } \right) = - \tan \theta $
Complete step by step solution:
We need to find the value of $\dfrac{{\left( {1 - \tan 2^\circ \cot 62^\circ } \right) }}{{\left( {\tan 152^\circ - \cot 88^\circ } \right)}}$
Now, we write the given equation as
$\dfrac{{\left( {1 - \tan 2^\circ \cot 62^\circ } \right) }}{{\left( {\tan 152^\circ - \cot 88^\circ } \right)}} = \dfrac{{\left( {1 - \tan \left( {{{90}^\circ} - {{88}^\circ}} \right)\cot {{62}^\circ}} \right)}}{{\left( {\tan \left( {{{90}^\circ} + {{62}^\circ}} \right) - \cot {{88}^\circ}} \right)}}$
Now by applying the formula
$\tan \left( {90 - \theta } \right) = \cot \theta \\ \tan \left( {90 + \theta } \right) = - \cot \theta $
We get
$\dfrac{{\left( {1 - \tan \left( {{{90}^\circ} - {{88}^\circ}} \right)\cot {{62}^\circ}} \right)}}{{\left( {\tan \left( {{{90}^\circ} + {{62}^\circ}} \right) - \cot {{88}^\circ}} \right)}} = \dfrac{{1 - \cot {{88}^\circ}\cot {{62}^\circ}}}{{\cot {{62}^\circ}\cot {{88}^\circ}}}$
Now we apply the formula $\cot \left( {x + y} \right) = \dfrac{{\cot x\cot y - 1}}{{\cot x + \cot y}}$ in the above equation, we get
$\dfrac{{1 - \cot {{88}^\circ}\cot {{62}^\circ}}}{{\cot {{62}^\circ}\cot {{88}^\circ}}} = \cot \left( {{{88}^\circ} + {{62}^\circ}} \right)$
Further solving, we get
$\cot \left( {{{88}^\circ} + {{62}^\circ}} \right) = \cot \left( {{{150}^\circ}} \right)$
$\cot \left( {{{150}^\circ}} \right) = \cot \left( {{{90}^\circ} + {{60}^\circ}} \right)$
Now by applying the formula $\cot \left( {90 + \theta } \right) = - \tan \theta $, we get
$\cot \left( {{{90}^\circ} + {{60}^\circ}} \right) = - \tan {60^\circ}$
(We know that $\tan {60^\circ} = \sqrt 3 $)
So, $ - \tan {60^\circ} = \sqrt 3 $ or $\tan {60^\circ} = - \sqrt 3 $
Therefore, the solution of $\dfrac{{\left( {1 - \tan 2^\circ \cot 62^\circ } \right) }}{{\left( {\tan 152^\circ - \cot 88^\circ } \right)}}$is $ - \sqrt 3 $.
Option ‘B’ is correct
Note: The interesting fact here is to convert $\tan$ to $\cot$ by using a complementary rule that is $\tan (90 – \theta) = \cot \theta$ and $\tan (90 + \theta) = − \cot \theta$ later use the expansion of $\cot (A \pm B)$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

List of Fastest Century in IPL History
