
Simplify the trigonometric expression \[\csc A – 2\cot 2A \cos A\].
A. \[2\sin A\]
B. \[\sec A\]
C. \[2\cos A \cot A\]
D. None of these
Answer
163.2k+ views
Hint: First, simplify the given expression by using the trigonometric ratio \[\cot x = \dfrac{1}{{\tan x }}\]. Then apply the trigonometric identity \[\tan 2x = \dfrac{{2\tan x}}{{1 - \tan^{2}x}}\] . Further simplify the expression by using the trigonometric ratio \[\tan x = \dfrac{{\sin x }}{{\cos x }}\]. In the end, apply the trigonometric identity \[\cos^{2}x + \sin^{2}x = 1\] and simplify the expression to reach the required answer.
Formula used:
1. \[\tan 2x = \dfrac{{2\tan x}}{{1 - \tan^{2}x}}\]
2. \[\cos^{2}x + \sin^{2}x = 1\]
3. \[\tan x = \dfrac{{\sin x }}{{\cos x }}\]
4. \[\cot x = \dfrac{1}{{\tan x }}\]
5. \[\csc x = \dfrac{1}{{\sin x }}\]
Complete step by step solution:
The given trigonometric expression is \[\csc A – 2\cot 2A \cos A\].
Let’s simplify the above expression.
Apply the trigonometric ratio \[\cot x = \dfrac{1}{{\tan x }}\].
\[\csc A – 2\cot 2A \cos A = \csc A - 2\left( {\dfrac{1}{{\tan 2A}}} \right) \cos A\]
Use the double angle formula \[\tan 2x = \dfrac{{2\tan x}}{{1 - \tan^{2}x}}\].
\[\csc A – 2\cot 2A \cos A = \csc A - 2\left( {\dfrac{1}{{\dfrac{{2\tan A}}{{1 - \tan^{2}A}}}}} \right) \cos A\]
\[ \Rightarrow \csc A – 2\cot 2A \cos A = \csc A - \left( {\dfrac{{2\cos A}}{{2\tan A}}} \right) \left( {1 - \tan^{2}A} \right)\]
Now apply the trigonometric ratio \[\tan x = \dfrac{{\sin x }}{{\cos x }}\].
\[\csc A - 2\cot 2A \cos A = \csc A - \left( {\dfrac{{\cos A}}{{\dfrac{{\sin A}}{{\cos A}}}}} \right) \left( {1 - \dfrac{{\sin^{2}A}}{{\cos^{2}A}}} \right)\]
Simplify the right-hand side of the above equation.
\[\csc A - 2\cot 2A \cos A = \csc A - \left( {\dfrac{{\cos^{2}A}}{{\sin A}}} \right) \left( {\dfrac{{\cos^{2}A - \sin^{2}A}}{{\cos^{2}A}}} \right)\]
\[ \Rightarrow \csc A - 2\cot 2A \cos A = \csc A - \left( {\dfrac{1}{{\sin A}}} \right) \left( {\cos^{2}A - \sin^{2}A} \right)\]
Use the trigonometric ratio \[\csc x = \dfrac{1}{{\sin x }}\].
\[csc A - 2\cot 2A \cos A = \csc A - \left( {\csc A} \right) \left( {\cos^{2}A - \sin^{2}A} \right)\]
Factor out the common term from the right-hand side.
\[\csc A - 2\cot 2A \cos A = \csc A \left( {1 - \left( {\cos^{2}A - \sin^{2}A} \right)} \right)\]
\[ \Rightarrow \csc A - 2\cot 2A \cos A = \csc A \left( {1 - \cos^{2}A + \sin^{2}A} \right)\]
Now apply the trigonometric identity \[\cos^{2}x + \sin^{2}x = 1\].
We get,
\[\csc A - 2\cot 2A \cos A = \csc A \left( {\cos^{2}A + \sin^{2}A - \cos^{2}A + \sin^{2}A} \right)\]
\[ \Rightarrow \csc A - 2\cot 2A \cos A = \csc A \left( {\sin^{2}A + \sin^{2}A} \right)\]
\[ \Rightarrow \csc A - 2\cot 2A \cos A = \csc A \left( {2\sin^{2}A} \right)\]
Again, use the trigonometric ratio \[\csc x = \dfrac{1}{{\sin x }}\].
\[\csc A - 2\cot 2A \cos A = \dfrac{1}{{\sin A}} \left( {2\sin^{2}A} \right)\]
\[ \Rightarrow \csc A - 2\cot 2A \cos A = 2\sin A\]
Hence the correct option is A.
Note: Students often get confused about the trigonometric ratios.
Following are the basic trigonometric ratios:
\[\tan x = \dfrac{{\sin x }}{{\cos x }} = \dfrac{1}{{\cot x }}\]
\[\csc x = \dfrac{1}{{\sin x }}\]
\[\sec x = \dfrac{1}{{\cos x }}\]
\[\cot x = \dfrac{{\cos x}}{{\sin x }} = \dfrac{1}{{\tan x }}\]
Formula used:
1. \[\tan 2x = \dfrac{{2\tan x}}{{1 - \tan^{2}x}}\]
2. \[\cos^{2}x + \sin^{2}x = 1\]
3. \[\tan x = \dfrac{{\sin x }}{{\cos x }}\]
4. \[\cot x = \dfrac{1}{{\tan x }}\]
5. \[\csc x = \dfrac{1}{{\sin x }}\]
Complete step by step solution:
The given trigonometric expression is \[\csc A – 2\cot 2A \cos A\].
Let’s simplify the above expression.
Apply the trigonometric ratio \[\cot x = \dfrac{1}{{\tan x }}\].
\[\csc A – 2\cot 2A \cos A = \csc A - 2\left( {\dfrac{1}{{\tan 2A}}} \right) \cos A\]
Use the double angle formula \[\tan 2x = \dfrac{{2\tan x}}{{1 - \tan^{2}x}}\].
\[\csc A – 2\cot 2A \cos A = \csc A - 2\left( {\dfrac{1}{{\dfrac{{2\tan A}}{{1 - \tan^{2}A}}}}} \right) \cos A\]
\[ \Rightarrow \csc A – 2\cot 2A \cos A = \csc A - \left( {\dfrac{{2\cos A}}{{2\tan A}}} \right) \left( {1 - \tan^{2}A} \right)\]
Now apply the trigonometric ratio \[\tan x = \dfrac{{\sin x }}{{\cos x }}\].
\[\csc A - 2\cot 2A \cos A = \csc A - \left( {\dfrac{{\cos A}}{{\dfrac{{\sin A}}{{\cos A}}}}} \right) \left( {1 - \dfrac{{\sin^{2}A}}{{\cos^{2}A}}} \right)\]
Simplify the right-hand side of the above equation.
\[\csc A - 2\cot 2A \cos A = \csc A - \left( {\dfrac{{\cos^{2}A}}{{\sin A}}} \right) \left( {\dfrac{{\cos^{2}A - \sin^{2}A}}{{\cos^{2}A}}} \right)\]
\[ \Rightarrow \csc A - 2\cot 2A \cos A = \csc A - \left( {\dfrac{1}{{\sin A}}} \right) \left( {\cos^{2}A - \sin^{2}A} \right)\]
Use the trigonometric ratio \[\csc x = \dfrac{1}{{\sin x }}\].
\[csc A - 2\cot 2A \cos A = \csc A - \left( {\csc A} \right) \left( {\cos^{2}A - \sin^{2}A} \right)\]
Factor out the common term from the right-hand side.
\[\csc A - 2\cot 2A \cos A = \csc A \left( {1 - \left( {\cos^{2}A - \sin^{2}A} \right)} \right)\]
\[ \Rightarrow \csc A - 2\cot 2A \cos A = \csc A \left( {1 - \cos^{2}A + \sin^{2}A} \right)\]
Now apply the trigonometric identity \[\cos^{2}x + \sin^{2}x = 1\].
We get,
\[\csc A - 2\cot 2A \cos A = \csc A \left( {\cos^{2}A + \sin^{2}A - \cos^{2}A + \sin^{2}A} \right)\]
\[ \Rightarrow \csc A - 2\cot 2A \cos A = \csc A \left( {\sin^{2}A + \sin^{2}A} \right)\]
\[ \Rightarrow \csc A - 2\cot 2A \cos A = \csc A \left( {2\sin^{2}A} \right)\]
Again, use the trigonometric ratio \[\csc x = \dfrac{1}{{\sin x }}\].
\[\csc A - 2\cot 2A \cos A = \dfrac{1}{{\sin A}} \left( {2\sin^{2}A} \right)\]
\[ \Rightarrow \csc A - 2\cot 2A \cos A = 2\sin A\]
Hence the correct option is A.
Note: Students often get confused about the trigonometric ratios.
Following are the basic trigonometric ratios:
\[\tan x = \dfrac{{\sin x }}{{\cos x }} = \dfrac{1}{{\cot x }}\]
\[\csc x = \dfrac{1}{{\sin x }}\]
\[\sec x = \dfrac{1}{{\cos x }}\]
\[\cot x = \dfrac{{\cos x}}{{\sin x }} = \dfrac{1}{{\tan x }}\]
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

IIT JEE Main Chemistry 2025: Syllabus, Important Chapters, Weightage

JEE Main Maths Question Paper PDF Download with Answer Key

JEE Main 2025 Session 2 City Intimation Slip Released - Download Link

Trending doubts
JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

JEE Main Cut-Off for NIT Kurukshetra: All Important Details

JEE Mains 2025 Cut-Off GFIT: Check All Rounds Cutoff Ranks

Lami's Theorem

Other Pages
NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
