
Position of a body with acceleration a is given by $x = k{a^m}{t^n}$. Here, t is time. Find the values of m and n.
1. $m = 1$, $n = 1$
2. $m = 1$,$n = 2$
3. $m = 2$,$n = 1$
4. $m = 2$,$n = 2$
Answer
232.8k+ views
Hint: Here, in this solution, we will start using the rules of dimensional formulas to determine the necessary values. Here, the dimensional formula is a kind of expression of the physical quantity in terms of basic units with proper dimensions. We’ll write each dimensional formulas in the given relation $x = k{a^m}{t^n}$ and solve further.
Complete answer:
We have given that the position of a body with acceleration in a t time is given by $x = k{a^m}{t^n}$
As we know that, the dimensional formula of the following are:
Position – $\left[ {{M^0}{L^1}{T^0}} \right]$
Acceleration – $\left[ {{M^0}{L^1}{T^{ - 2}}} \right]$
Time – $\left[ {{M^0}{L^0}{T^1}} \right]$
Now, given that
$x = k{a^m}{t^n}$
Putting all the above values in terms of dimensional formulas, It will be,
$\left[ {{M^0}{L^1}{T^0}} \right] = k{\left[ {{M^0}{L^1}{T^{ - 2}}} \right]^m}{\left[ {{M^0}{L^0}{T^1}} \right]^n}$
Multiplying the exponents with the terms inside the bracket,
$\left[ {{M^0}{L^1}{T^0}} \right] = k\left[ {{M^0}{L^m}{T^{ - 2m}}} \right]\left[ {{M^0}{L^0}{T^n}} \right]$
Now, on the right side, the same bases are in multiplication with different exponents. So, add the exponents of the exponential terms i.e.,
${x^p}{x^q} = {x^{p + q}}$
$\left[ {{M^0}{L^1}{T^0}} \right] = k\left[ {{M^0}{L^m}{T^{ - 2m + n}}} \right]$
We know that according to the principal homogeneity dimensions of the RHS should be equal to the dimensions LHS. Thus on comparing both sides of the above equation and the term k is scalar. Only compare similar terms.
It implies that, $m = 1$ And $ - 2m + n = 0$
Thus, we will get:
$n = 2$
Hence, option (2) is the correct answer i.e., $m = 1$,$n = 2$
Note: In such cases, we must understand how to apply the rules of dimensional formula analysis to determine the various dimensional formulas. We should also be familiar with the dimensional formulas for basic kinematic quantities such as velocity, acceleration, distance, and so on.
Complete answer:
We have given that the position of a body with acceleration in a t time is given by $x = k{a^m}{t^n}$
As we know that, the dimensional formula of the following are:
Position – $\left[ {{M^0}{L^1}{T^0}} \right]$
Acceleration – $\left[ {{M^0}{L^1}{T^{ - 2}}} \right]$
Time – $\left[ {{M^0}{L^0}{T^1}} \right]$
Now, given that
$x = k{a^m}{t^n}$
Putting all the above values in terms of dimensional formulas, It will be,
$\left[ {{M^0}{L^1}{T^0}} \right] = k{\left[ {{M^0}{L^1}{T^{ - 2}}} \right]^m}{\left[ {{M^0}{L^0}{T^1}} \right]^n}$
Multiplying the exponents with the terms inside the bracket,
$\left[ {{M^0}{L^1}{T^0}} \right] = k\left[ {{M^0}{L^m}{T^{ - 2m}}} \right]\left[ {{M^0}{L^0}{T^n}} \right]$
Now, on the right side, the same bases are in multiplication with different exponents. So, add the exponents of the exponential terms i.e.,
${x^p}{x^q} = {x^{p + q}}$
$\left[ {{M^0}{L^1}{T^0}} \right] = k\left[ {{M^0}{L^m}{T^{ - 2m + n}}} \right]$
We know that according to the principal homogeneity dimensions of the RHS should be equal to the dimensions LHS. Thus on comparing both sides of the above equation and the term k is scalar. Only compare similar terms.
It implies that, $m = 1$ And $ - 2m + n = 0$
Thus, we will get:
$n = 2$
Hence, option (2) is the correct answer i.e., $m = 1$,$n = 2$
Note: In such cases, we must understand how to apply the rules of dimensional formula analysis to determine the various dimensional formulas. We should also be familiar with the dimensional formulas for basic kinematic quantities such as velocity, acceleration, distance, and so on.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

