
One mole of ideal monoatomic gas ($\gamma $ = 5/3) is mixed with one mole of diatomic gas ($\gamma $ = 7/5). What is $\gamma $ for the mixture? ( $\gamma $ denotes the ratio of specific heat at constant pressure, to that at constant volume.)
(a) 3/2
(b) 23/15
(c) 35/23
(d) 4/3
Answer
223.5k+ views
Hint: For the given mixture, the specific heat for a mixture of two gases is given by\[{{\gamma }_{mix}}=~\dfrac{\left[ {{\mathbf{n}}_{\mathbf{1}}}\text{ }{{\gamma }_{\mathbf{1}}}\text{ }+\text{ }{{\mathbf{n}}_{2}}\text{ }{{\gamma }_{2}} \right]}{\left[ \mathbf{n1}\text{ }+\text{ }\mathbf{n2} \right]}\text{, where n refers to the number of moles of each gas }\]
Now, apply this formula for the given mixture.
Step-by-Step Solution:
Let us first understand the concept of the ratio of specific heats before moving on to the particulars of this question.
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (CP) to heat capacity at constant volume (CV). It is sometimes also known as the isentropic expansion factor and is denoted by $\gamma $ for an ideal gas or κ, the isentropic exponent for a real gas. The symbol gamma is used by aerospace and chemical engineers.
\[\gamma \text{ }=\text{ }\dfrac{{{C}_{P}}}{{{C}_{V}}}=\dfrac{{{c}_{P}}}{{{c}_{V}}}\]
where C is the heat capacity and c the specific heat capacity (heat capacity per unit mass) of a gas. The suffixes P and V refer to constant pressure and constant volume conditions respectively.
The change in internal energy and enthalpy of mixing ideal gases is zero. According to Gibbs' Theorem, the individual contribution of each species in an ideal gas mixture to the extensive thermodynamic properties of the mixture is the same as that of the pure species at the same temperature and at the partial pressure of the species in the mixture.
Thus, the resulting formula the specific heat for a mixture of two gases is given by\[{{\gamma }_{mix}}=~\dfrac{\left[ {{\mathbf{n}}_{\mathbf{1}}}\text{ }{{\gamma }_{\mathbf{1}}}\text{ }+\text{ }{{\mathbf{n}}_{2}}\text{ }{{\gamma }_{2}} \right]}{\left[ \mathbf{n1}\text{ }+\text{ }\mathbf{n2} \right]}\text{, where n refers to the number of moles of each gas }\]
Now, applying this formula for the given gases
\[\begin{align}
& {{\gamma }_{mix}}=~\dfrac{\left[ \text{1}\text{. 5/3 }+\text{ 1}\text{.7/5} \right]}{1+1}\text{, where n refers to the number of moles of each gas } \\
& {{\gamma }_{mix}}\approx 1.5 \\
\end{align}\]
Therefore, the required answer is a)
Note: Remember that the Ratio of Specific Heat is dimensionless and the value is the same in the SI and the Imperial system of units. Another way of obtaining the specific heats of a gaseous mixture would be calculating the sum of the product of mole fraction times the specific heat of that gas component.
Now, apply this formula for the given mixture.
Step-by-Step Solution:
Let us first understand the concept of the ratio of specific heats before moving on to the particulars of this question.
In thermal physics and thermodynamics, the heat capacity ratio, also known as the adiabatic index, the ratio of specific heats, or Laplace's coefficient, is the ratio of the heat capacity at constant pressure (CP) to heat capacity at constant volume (CV). It is sometimes also known as the isentropic expansion factor and is denoted by $\gamma $ for an ideal gas or κ, the isentropic exponent for a real gas. The symbol gamma is used by aerospace and chemical engineers.
\[\gamma \text{ }=\text{ }\dfrac{{{C}_{P}}}{{{C}_{V}}}=\dfrac{{{c}_{P}}}{{{c}_{V}}}\]
where C is the heat capacity and c the specific heat capacity (heat capacity per unit mass) of a gas. The suffixes P and V refer to constant pressure and constant volume conditions respectively.
The change in internal energy and enthalpy of mixing ideal gases is zero. According to Gibbs' Theorem, the individual contribution of each species in an ideal gas mixture to the extensive thermodynamic properties of the mixture is the same as that of the pure species at the same temperature and at the partial pressure of the species in the mixture.
Thus, the resulting formula the specific heat for a mixture of two gases is given by\[{{\gamma }_{mix}}=~\dfrac{\left[ {{\mathbf{n}}_{\mathbf{1}}}\text{ }{{\gamma }_{\mathbf{1}}}\text{ }+\text{ }{{\mathbf{n}}_{2}}\text{ }{{\gamma }_{2}} \right]}{\left[ \mathbf{n1}\text{ }+\text{ }\mathbf{n2} \right]}\text{, where n refers to the number of moles of each gas }\]
Now, applying this formula for the given gases
\[\begin{align}
& {{\gamma }_{mix}}=~\dfrac{\left[ \text{1}\text{. 5/3 }+\text{ 1}\text{.7/5} \right]}{1+1}\text{, where n refers to the number of moles of each gas } \\
& {{\gamma }_{mix}}\approx 1.5 \\
\end{align}\]
Therefore, the required answer is a)
Note: Remember that the Ratio of Specific Heat is dimensionless and the value is the same in the SI and the Imperial system of units. Another way of obtaining the specific heats of a gaseous mixture would be calculating the sum of the product of mole fraction times the specific heat of that gas component.
Recently Updated Pages
JEE Main 2026: Exam Dates OUT, Registration Open, Syllabus & Eligibility

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
Understanding Atomic Structure for Beginners

Half Life of Zero Order Reaction for JEE

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Understanding Inertial and Non-Inertial Frames of Reference

Understanding Displacement and Velocity Time Graphs

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Understanding How a Current Loop Acts as a Magnetic Dipole

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

NCERT Solutions For Class 11 Chemistry Chapter 7 Equilibrium in Hindi - 2025-26

Free Radical Substitution and Its Stepwise Mechanism

NCERT Solutions For Class 11 Chemistry Chapter 8 Redox Reactions in Hindi - 2025-26

