
Let $\left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = {\text{A}}{x^4} + {\text{B}}{x^3} + {\text{C}}{x^2} + {\text{D}}x + {\text{E}}$. Then find the value of 5A+4B+3C+2D+E.
$
{\text{A}}{\text{. 0}} \\
{\text{B}}{\text{. }} - 16 \\
{\text{C}}{\text{. 16}} \\
{\text{D}}{\text{. }} - 11 \\
$
Answer
207.9k+ views
Hint: Here, we will be proceeding by expanding the determinant for the given $3 \times 3$ order matrix in the LHS of the given equation and then we will compare the LHS and RHS of this equation to find the values of A, B, C, D and E.
Complete step-by-step answer:
As we know that by expanding the determinant of any $3 \times 3$ order matrix through first row, we have
$\left| {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{23}}{a_{31}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{22}}{a_{31}}} \right)$
The given determinant of a matrix of order $3 \times 3$ when expanded through first row, we have
$
\left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = x\left( {6x - 6x} \right) - 2\left( {6{x^2} - 6x} \right) + x\left( {{x^3} - {x^2}} \right) = 0 - 12{x^2} + 12x + {x^4} - {x^3} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = {x^4} - {x^3} - 12{x^2} + 12x + 0{\text{ }} \to {\text{(1)}} \\
$
Since, it is given that $\left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = {\text{A}}{x^4} + {\text{B}}{x^3} + {\text{C}}{x^2} + {\text{D}}x + {\text{E }} \to {\text{(2)}}$
By comparing the RHS of equations (1) and (2), we get
A=1, B=-1, C=-12, D=12 and E=0
Therefore, the value of the expression 5A+4B+3C+2D+E can be obtained by putting the values of A, B, C, D and E obtained.
5A+4B+3C+2D+E$ = 5\left( 1 \right) + 4\left( { - 1} \right) + 3\left( { - 12} \right) + 2\left( {12} \right) + 0 = 5 - 4 - 36 + 24 = - 11$.
Hence, option D is correct.
Note: Here, we can also expand the determinant of the $3 \times 3$ order matrix given in the LHS of the given equation through any row or column but the results will always be the same no matter through which row or column the determinant is getting expanded.
Complete step-by-step answer:
As we know that by expanding the determinant of any $3 \times 3$ order matrix through first row, we have
$\left| {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{23}}{a_{31}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{22}}{a_{31}}} \right)$
The given determinant of a matrix of order $3 \times 3$ when expanded through first row, we have
$
\left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = x\left( {6x - 6x} \right) - 2\left( {6{x^2} - 6x} \right) + x\left( {{x^3} - {x^2}} \right) = 0 - 12{x^2} + 12x + {x^4} - {x^3} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = {x^4} - {x^3} - 12{x^2} + 12x + 0{\text{ }} \to {\text{(1)}} \\
$
Since, it is given that $\left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = {\text{A}}{x^4} + {\text{B}}{x^3} + {\text{C}}{x^2} + {\text{D}}x + {\text{E }} \to {\text{(2)}}$
By comparing the RHS of equations (1) and (2), we get
A=1, B=-1, C=-12, D=12 and E=0
Therefore, the value of the expression 5A+4B+3C+2D+E can be obtained by putting the values of A, B, C, D and E obtained.
5A+4B+3C+2D+E$ = 5\left( 1 \right) + 4\left( { - 1} \right) + 3\left( { - 12} \right) + 2\left( {12} \right) + 0 = 5 - 4 - 36 + 24 = - 11$.
Hence, option D is correct.
Note: Here, we can also expand the determinant of the $3 \times 3$ order matrix given in the LHS of the given equation through any row or column but the results will always be the same no matter through which row or column the determinant is getting expanded.
Recently Updated Pages
JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Main 2022 (July 28th Shift 1) Physics Question Paper with Answer Key

JEE Main 2023 (January 29th Shift 2) Physics Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key

Trending doubts
Atomic Structure: Definition, Models, and Examples

How to Convert a Galvanometer into an Ammeter or Voltmeter

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Elastic Collision in Two Dimensions: Concepts, Laws, Derivation & Examples

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

JEE Main Session 1 Application Form Opens at jeemain.nta.nic.in

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Geostationary and Geosynchronous Satellites Explained

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Guru Nanak Jayanti 2025: Date, History & Celebration of Gurpurab

Halloween 2025: Date, History, Significance, and Traditions

