
Let $\left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = {\text{A}}{x^4} + {\text{B}}{x^3} + {\text{C}}{x^2} + {\text{D}}x + {\text{E}}$. Then find the value of 5A+4B+3C+2D+E.
$
{\text{A}}{\text{. 0}} \\
{\text{B}}{\text{. }} - 16 \\
{\text{C}}{\text{. 16}} \\
{\text{D}}{\text{. }} - 11 \\
$
Answer
214.2k+ views
Hint: Here, we will be proceeding by expanding the determinant for the given $3 \times 3$ order matrix in the LHS of the given equation and then we will compare the LHS and RHS of this equation to find the values of A, B, C, D and E.
Complete step-by-step answer:
As we know that by expanding the determinant of any $3 \times 3$ order matrix through first row, we have
$\left| {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{23}}{a_{31}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{22}}{a_{31}}} \right)$
The given determinant of a matrix of order $3 \times 3$ when expanded through first row, we have
$
\left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = x\left( {6x - 6x} \right) - 2\left( {6{x^2} - 6x} \right) + x\left( {{x^3} - {x^2}} \right) = 0 - 12{x^2} + 12x + {x^4} - {x^3} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = {x^4} - {x^3} - 12{x^2} + 12x + 0{\text{ }} \to {\text{(1)}} \\
$
Since, it is given that $\left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = {\text{A}}{x^4} + {\text{B}}{x^3} + {\text{C}}{x^2} + {\text{D}}x + {\text{E }} \to {\text{(2)}}$
By comparing the RHS of equations (1) and (2), we get
A=1, B=-1, C=-12, D=12 and E=0
Therefore, the value of the expression 5A+4B+3C+2D+E can be obtained by putting the values of A, B, C, D and E obtained.
5A+4B+3C+2D+E$ = 5\left( 1 \right) + 4\left( { - 1} \right) + 3\left( { - 12} \right) + 2\left( {12} \right) + 0 = 5 - 4 - 36 + 24 = - 11$.
Hence, option D is correct.
Note: Here, we can also expand the determinant of the $3 \times 3$ order matrix given in the LHS of the given equation through any row or column but the results will always be the same no matter through which row or column the determinant is getting expanded.
Complete step-by-step answer:
As we know that by expanding the determinant of any $3 \times 3$ order matrix through first row, we have
$\left| {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{12}}\left( {{a_{21}}{a_{33}} - {a_{23}}{a_{31}}} \right) + {a_{13}}\left( {{a_{21}}{a_{32}} - {a_{22}}{a_{31}}} \right)$
The given determinant of a matrix of order $3 \times 3$ when expanded through first row, we have
$
\left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = x\left( {6x - 6x} \right) - 2\left( {6{x^2} - 6x} \right) + x\left( {{x^3} - {x^2}} \right) = 0 - 12{x^2} + 12x + {x^4} - {x^3} \\
\Rightarrow \left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = {x^4} - {x^3} - 12{x^2} + 12x + 0{\text{ }} \to {\text{(1)}} \\
$
Since, it is given that $\left| {\begin{array}{*{20}{c}}
x&2&x \\
{{x^2}}&x&6 \\
x&x&6
\end{array}} \right| = {\text{A}}{x^4} + {\text{B}}{x^3} + {\text{C}}{x^2} + {\text{D}}x + {\text{E }} \to {\text{(2)}}$
By comparing the RHS of equations (1) and (2), we get
A=1, B=-1, C=-12, D=12 and E=0
Therefore, the value of the expression 5A+4B+3C+2D+E can be obtained by putting the values of A, B, C, D and E obtained.
5A+4B+3C+2D+E$ = 5\left( 1 \right) + 4\left( { - 1} \right) + 3\left( { - 12} \right) + 2\left( {12} \right) + 0 = 5 - 4 - 36 + 24 = - 11$.
Hence, option D is correct.
Note: Here, we can also expand the determinant of the $3 \times 3$ order matrix given in the LHS of the given equation through any row or column but the results will always be the same no matter through which row or column the determinant is getting expanded.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

Atomic Structure: Definition, Models, and Examples

Degree of Dissociation: Meaning, Formula, Calculation & Uses

How to Convert a Galvanometer into an Ammeter or Voltmeter

Average and RMS Value in Physics: Formula, Comparison & Application

