Answer
Verified
85.2k+ views
Hint: A limit is basically a number attained by a function when the independent variable of the function approaches a given value. For example, if we have the function \[f\left( x \right){\text{ }} = {\text{ }}6x\], then it is stated as, “the limit of the function \[f\left( x \right)\] as \[\;x\] approaches 2 is 12. Mathematically, it is expressed as \[\mathop {lim}\limits_{ \to 2} f\left( x \right){\text{ }} = {\text{ }}12\].
Continuity of a Function
A function f is said to be continuous at the point \[x{\text{ }} = {\text{ }}a\] if the following conditions are true:
\[f\left( a \right)\] is defined
\[\mathop {lim}\limits_{ \to {\text{ }}a} {\text{ }}f\left( x \right)\] exists
\[\mathop {lim}\limits_{ \to {\text{ }}a} f\left( x \right) = f(a)\]
Both side limits must also be equal i.e. \[\mathop {lim}\limits_{x \to {\text{ }}{a^ - }} {\text{ }}f\left( x \right) = f(a) = \mathop {lim}\limits_{x \to {\text{ }}{a^ + }} {\text{ }}f\left( x \right)\].
Complete step-by-step answer:
Here, we cannot put limits directly into this expression as it stands. But we can use binomial expansion, as follows;
\[\left( {\sqrt[3]{{1 + a}} - 1} \right){x^2} + \left( {\sqrt {1 + a} - 1} \right)x + \left( {\sqrt[6]{{1 + a}} - 1} \right) = 0\]
We want to use binomial theorem, we need to make sure it is in the proper form to use the Binomial Series. Here is the proper form for this function,
\[ \Rightarrow \left( {{{\left( {1 + a} \right)}^{\dfrac{1}{3}}} - 1} \right){x^2} + \left( {{{\left( {1 + a} \right)}^{\dfrac{1}{2}}} - 1} \right)x + \left( {{{\left( {1 + a} \right)}^{\dfrac{1}{6}}} - 1} \right) = 0\]
Using binomial theorem and expanding. (Substituting $n = \dfrac{1}{3}$, , $n = \dfrac{1}{2}$ and $n = \dfrac{1}{6}$ into the binomial series, we get::-
\[ \Rightarrow \left( {1 + \dfrac{a}{3} - 1} \right){x^2} + \left( {1 + \dfrac{a}{2} - 1} \right)x + \left( {1 + \dfrac{a}{6} - 1} \right) = 0\](Now all we need to do is plug into the formula from the notes and write down the first terms. We have ignored all other terms of the binomial series as other terms were very small so we assumed them negligible.)
\[ \Rightarrow a\left( {\dfrac{{{x^2}}}{3} + \dfrac{x}{2} + \dfrac{1}{6}} \right) = 0\]
\[ \Rightarrow 2{x^2} + 3x + 1 = 0\]
Factorising the above equation.
\[ \Rightarrow \left( {2x + 1} \right)(x + 1) = 0\]
Solving the above equation for x
$ \Rightarrow x = - \dfrac{1}{2}, - 1$
\[\mathop { \Rightarrow \lim }\limits_{a \to {0^ + }} \alpha \left( a \right)\] and \[\mathop {\lim }\limits_{a \to {0^ + }} \beta \left( a \right)\] are $ - \dfrac{1}{2}$and $ - 1$
So, option (D) is the correct answer.
Note: In some questions, we can just put the value in the limit and solve. But in many situations we cannot do this because we end up with the mathematically meaningless expression $\dfrac{0}{0}$ which could be anything. It is not always possible to work out limits simply by looking for factors and simplifying. So, we need to add binomial expansion and Taylor/Maclaurin series to our list of methods for working out limits as shown in the above solution.
Continuity of a Function
A function f is said to be continuous at the point \[x{\text{ }} = {\text{ }}a\] if the following conditions are true:
\[f\left( a \right)\] is defined
\[\mathop {lim}\limits_{ \to {\text{ }}a} {\text{ }}f\left( x \right)\] exists
\[\mathop {lim}\limits_{ \to {\text{ }}a} f\left( x \right) = f(a)\]
Both side limits must also be equal i.e. \[\mathop {lim}\limits_{x \to {\text{ }}{a^ - }} {\text{ }}f\left( x \right) = f(a) = \mathop {lim}\limits_{x \to {\text{ }}{a^ + }} {\text{ }}f\left( x \right)\].
Complete step-by-step answer:
Here, we cannot put limits directly into this expression as it stands. But we can use binomial expansion, as follows;
\[\left( {\sqrt[3]{{1 + a}} - 1} \right){x^2} + \left( {\sqrt {1 + a} - 1} \right)x + \left( {\sqrt[6]{{1 + a}} - 1} \right) = 0\]
We want to use binomial theorem, we need to make sure it is in the proper form to use the Binomial Series. Here is the proper form for this function,
\[ \Rightarrow \left( {{{\left( {1 + a} \right)}^{\dfrac{1}{3}}} - 1} \right){x^2} + \left( {{{\left( {1 + a} \right)}^{\dfrac{1}{2}}} - 1} \right)x + \left( {{{\left( {1 + a} \right)}^{\dfrac{1}{6}}} - 1} \right) = 0\]
Using binomial theorem and expanding. (Substituting $n = \dfrac{1}{3}$, , $n = \dfrac{1}{2}$ and $n = \dfrac{1}{6}$ into the binomial series, we get::-
\[ \Rightarrow \left( {1 + \dfrac{a}{3} - 1} \right){x^2} + \left( {1 + \dfrac{a}{2} - 1} \right)x + \left( {1 + \dfrac{a}{6} - 1} \right) = 0\](Now all we need to do is plug into the formula from the notes and write down the first terms. We have ignored all other terms of the binomial series as other terms were very small so we assumed them negligible.)
\[ \Rightarrow a\left( {\dfrac{{{x^2}}}{3} + \dfrac{x}{2} + \dfrac{1}{6}} \right) = 0\]
\[ \Rightarrow 2{x^2} + 3x + 1 = 0\]
Factorising the above equation.
\[ \Rightarrow \left( {2x + 1} \right)(x + 1) = 0\]
Solving the above equation for x
$ \Rightarrow x = - \dfrac{1}{2}, - 1$
\[\mathop { \Rightarrow \lim }\limits_{a \to {0^ + }} \alpha \left( a \right)\] and \[\mathop {\lim }\limits_{a \to {0^ + }} \beta \left( a \right)\] are $ - \dfrac{1}{2}$and $ - 1$
So, option (D) is the correct answer.
Note: In some questions, we can just put the value in the limit and solve. But in many situations we cannot do this because we end up with the mathematically meaningless expression $\dfrac{0}{0}$ which could be anything. It is not always possible to work out limits simply by looking for factors and simplifying. So, we need to add binomial expansion and Taylor/Maclaurin series to our list of methods for working out limits as shown in the above solution.
Recently Updated Pages
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
What does a hydrometer consist of A A cylindrical stem class 9 physics JEE_Main
A motorcyclist of mass m is to negotiate a curve of class 9 physics JEE_Main
Other Pages
If a gas expands at constant temperature it indicates class 11 chemistry JEE_Main
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
A horizontal force F mg3 is applied on the upper surface class 11 physics JEE_MAIN
Two 5 molal solutions are prepared by dissolving a class 11 chemistry JEE_Main
Density of carbon monoxide is maximum at A 05 atm and class 11 chemistry JEE_Main
Derive an expression for maximum speed of a car on class 11 physics JEE_Main