
Let \[\alpha \left( a \right)\] and \[\beta \left( a \right)\] be the roots of the equation \[\left( {\sqrt[3]{{1 + a}} - 1} \right){x^2} + \left( {\sqrt {1 + a} - 1} \right)x + \left( {\sqrt[6]{{1 + a}} - 1} \right) = 0\] where \[a > - 1\]then, \[\mathop {\lim }\limits_{a \to {0^ + }} \alpha \left( a \right)\] and \[\mathop {\lim }\limits_{a \to {0^ + }} \beta \left( a \right)\]
A) $ - \dfrac{5}{2}and\;1$
B) $ - \dfrac{1}{2}and\; - 1$
C) $ - \dfrac{7}{2}and\;2$
D) $ - \dfrac{9}{2}and\;3$
Answer
151.5k+ views
Hint: A limit is basically a number attained by a function when the independent variable of the function approaches a given value. For example, if we have the function \[f\left( x \right){\text{ }} = {\text{ }}6x\], then it is stated as, “the limit of the function \[f\left( x \right)\] as \[\;x\] approaches 2 is 12. Mathematically, it is expressed as \[\mathop {lim}\limits_{ \to 2} f\left( x \right){\text{ }} = {\text{ }}12\].
Continuity of a Function
A function f is said to be continuous at the point \[x{\text{ }} = {\text{ }}a\] if the following conditions are true:
\[f\left( a \right)\] is defined
\[\mathop {lim}\limits_{ \to {\text{ }}a} {\text{ }}f\left( x \right)\] exists
\[\mathop {lim}\limits_{ \to {\text{ }}a} f\left( x \right) = f(a)\]
Both side limits must also be equal i.e. \[\mathop {lim}\limits_{x \to {\text{ }}{a^ - }} {\text{ }}f\left( x \right) = f(a) = \mathop {lim}\limits_{x \to {\text{ }}{a^ + }} {\text{ }}f\left( x \right)\].
Complete step-by-step answer:
Here, we cannot put limits directly into this expression as it stands. But we can use binomial expansion, as follows;
\[\left( {\sqrt[3]{{1 + a}} - 1} \right){x^2} + \left( {\sqrt {1 + a} - 1} \right)x + \left( {\sqrt[6]{{1 + a}} - 1} \right) = 0\]
We want to use binomial theorem, we need to make sure it is in the proper form to use the Binomial Series. Here is the proper form for this function,
\[ \Rightarrow \left( {{{\left( {1 + a} \right)}^{\dfrac{1}{3}}} - 1} \right){x^2} + \left( {{{\left( {1 + a} \right)}^{\dfrac{1}{2}}} - 1} \right)x + \left( {{{\left( {1 + a} \right)}^{\dfrac{1}{6}}} - 1} \right) = 0\]
Using binomial theorem and expanding. (Substituting $n = \dfrac{1}{3}$, , $n = \dfrac{1}{2}$ and $n = \dfrac{1}{6}$ into the binomial series, we get::-
\[ \Rightarrow \left( {1 + \dfrac{a}{3} - 1} \right){x^2} + \left( {1 + \dfrac{a}{2} - 1} \right)x + \left( {1 + \dfrac{a}{6} - 1} \right) = 0\](Now all we need to do is plug into the formula from the notes and write down the first terms. We have ignored all other terms of the binomial series as other terms were very small so we assumed them negligible.)
\[ \Rightarrow a\left( {\dfrac{{{x^2}}}{3} + \dfrac{x}{2} + \dfrac{1}{6}} \right) = 0\]
\[ \Rightarrow 2{x^2} + 3x + 1 = 0\]
Factorising the above equation.
\[ \Rightarrow \left( {2x + 1} \right)(x + 1) = 0\]
Solving the above equation for x
$ \Rightarrow x = - \dfrac{1}{2}, - 1$
\[\mathop { \Rightarrow \lim }\limits_{a \to {0^ + }} \alpha \left( a \right)\] and \[\mathop {\lim }\limits_{a \to {0^ + }} \beta \left( a \right)\] are $ - \dfrac{1}{2}$and $ - 1$
So, option (D) is the correct answer.
Note: In some questions, we can just put the value in the limit and solve. But in many situations we cannot do this because we end up with the mathematically meaningless expression $\dfrac{0}{0}$ which could be anything. It is not always possible to work out limits simply by looking for factors and simplifying. So, we need to add binomial expansion and Taylor/Maclaurin series to our list of methods for working out limits as shown in the above solution.
Continuity of a Function
A function f is said to be continuous at the point \[x{\text{ }} = {\text{ }}a\] if the following conditions are true:
\[f\left( a \right)\] is defined
\[\mathop {lim}\limits_{ \to {\text{ }}a} {\text{ }}f\left( x \right)\] exists
\[\mathop {lim}\limits_{ \to {\text{ }}a} f\left( x \right) = f(a)\]
Both side limits must also be equal i.e. \[\mathop {lim}\limits_{x \to {\text{ }}{a^ - }} {\text{ }}f\left( x \right) = f(a) = \mathop {lim}\limits_{x \to {\text{ }}{a^ + }} {\text{ }}f\left( x \right)\].
Complete step-by-step answer:
Here, we cannot put limits directly into this expression as it stands. But we can use binomial expansion, as follows;
\[\left( {\sqrt[3]{{1 + a}} - 1} \right){x^2} + \left( {\sqrt {1 + a} - 1} \right)x + \left( {\sqrt[6]{{1 + a}} - 1} \right) = 0\]
We want to use binomial theorem, we need to make sure it is in the proper form to use the Binomial Series. Here is the proper form for this function,
\[ \Rightarrow \left( {{{\left( {1 + a} \right)}^{\dfrac{1}{3}}} - 1} \right){x^2} + \left( {{{\left( {1 + a} \right)}^{\dfrac{1}{2}}} - 1} \right)x + \left( {{{\left( {1 + a} \right)}^{\dfrac{1}{6}}} - 1} \right) = 0\]
Using binomial theorem and expanding. (Substituting $n = \dfrac{1}{3}$, , $n = \dfrac{1}{2}$ and $n = \dfrac{1}{6}$ into the binomial series, we get::-
\[ \Rightarrow \left( {1 + \dfrac{a}{3} - 1} \right){x^2} + \left( {1 + \dfrac{a}{2} - 1} \right)x + \left( {1 + \dfrac{a}{6} - 1} \right) = 0\](Now all we need to do is plug into the formula from the notes and write down the first terms. We have ignored all other terms of the binomial series as other terms were very small so we assumed them negligible.)
\[ \Rightarrow a\left( {\dfrac{{{x^2}}}{3} + \dfrac{x}{2} + \dfrac{1}{6}} \right) = 0\]
\[ \Rightarrow 2{x^2} + 3x + 1 = 0\]
Factorising the above equation.
\[ \Rightarrow \left( {2x + 1} \right)(x + 1) = 0\]
Solving the above equation for x
$ \Rightarrow x = - \dfrac{1}{2}, - 1$
\[\mathop { \Rightarrow \lim }\limits_{a \to {0^ + }} \alpha \left( a \right)\] and \[\mathop {\lim }\limits_{a \to {0^ + }} \beta \left( a \right)\] are $ - \dfrac{1}{2}$and $ - 1$
So, option (D) is the correct answer.
Note: In some questions, we can just put the value in the limit and solve. But in many situations we cannot do this because we end up with the mathematically meaningless expression $\dfrac{0}{0}$ which could be anything. It is not always possible to work out limits simply by looking for factors and simplifying. So, we need to add binomial expansion and Taylor/Maclaurin series to our list of methods for working out limits as shown in the above solution.
Recently Updated Pages
Difference Between Area and Volume

Difference Between Mutually Exclusive and Independent Events

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Displacement-Time Graph and Velocity-Time Graph for JEE

Collision - Important Concepts and Tips for JEE
